Data Science Diploma in Banking Supervision (CEMFI) Joël Marbet July 01, 2025 # Table of contents | A | bout | chis Course | 1 | | | | |----------------|------|---|---------|--|--|--| | | Usei | l Resources | 1 | | | | | | Soft | rare Installation Notes | 2 | | | | | | | onda Installation | 2 | | | | | | Crea | ing a Conda Environment | 3 | | | | | | Inst | lling VS Code | 5 | | | | | | | ng the Installation | 6 | | | | | Ι | Ov | erview and Methods | 9 | | | | | 1 Introduction | | | | | | | | | 1.1 | Taking Advantage of Machine Learning in Banking Supervision . 1 | 1 | | | | | | 1.2 | 8 | 13 | | | | | | | | 13 | | | | | | | 0.0 | 13 | | | | | | | 1.2.3 Relation to Statistics and Econometrics | 4 | | | | | | 1.3 | Why Has Machine Learning Become Popular Only Recently? 1 | 15 | | | | | | 1.4 | Types of Learning | 15 | | | | | | | 1 0 | 6 | | | | | | | 1.4.2 Unsupervised Learning | 8 | | | | | | | 1.4.3 Reinforcement Learning | 9 | | | | | | 1.5 | Popular Practice Datasets | 21 | | | | | 2 | Bas | c Concepts 2 | 3 | | | | | | 2.1 | Linear Regression in a ML Context | 23 | | | | | | 2.2 | 0 0 | 24 | | | | | | 2.3 | Model Evaluation | 27 | | | | | | | 2.3.1 Regression Models | 27 | | | | | | | 2.3.2 Classification Models | 28 | | | | | | 2.4 | Generalization and Overfitting | 31 | | | | | | | 2.4.1 Bias-Variance Tradeoff | 33 | | | | | | | 2.4.2 Regularization | 34 | | | | | | | 2.4.3 | Training, Validation, and Test Datasets | | |---|------|---------|---|------| | | | 2.4.4 | Cross-Validation | . 37 | | | 2.5 | Pythor | n Implementation | 38 | | | | 2.5.1 | Data Exploration & Preprocessing | 40 | | | | 2.5.2 | Implementing Logistic Regression | 53 | | | | 2.5.3 | Conclusions | 58 | | 3 | Dec | ision T | rees | 59 | | Ū | 3.1 | | is a Decision Tree? | | | | 3.2 | | nology | | | | 3.3 | | o Grow a Tree | | | | 0.0 | 3.3.1 | Example: Classification Problem | | | | | 3.3.2 | Stopping Criteria and Pruning a Tree | | | | 3.4 | | tages and Disadvantages | | | | 3.5 | | ble Methods | | | | | 3.5.1 | Random Forests | | | | | 3.5.2 | Boosting | | | | | 3.5.3 | Interpreting Ensemble Methods | | | | 3.6 | | n Implementation | | | | 0.0 | 3.6.1 | Data Preprocessing | | | | | 3.6.2 | Implementing a Decision Tree Classifier | | | | | 3.6.3 | Implementing a Random Forest Classifier | | | | | 3.6.4 | Implementing a XGBoost Classifier | | | | | 3.6.5 | Feature Importance | | | | | 3.6.6 | Permuation Importance | | | | | 3.6.7 | Conclusions | | | 1 | Nou | nal Na | tworks | 87 | | 4 | 4.1 | | stworks
is a Neural Network? | | | | 4.1 | 4.1.1 | Origins of the Term "Neural Network" | | | | 4.2 | | tificial Neuron | | | | 4.2 | 4.2.1 | Activation Functions | | | | | 4.2.1 | | | | | 4.3 | | A Special Case: Perceptron | | | | _ | | ng a Neural Network from Artificial Neurons | | | | 4.4 | | on to Linear Regression | | | | 4.5 | | ple Example | | | | 4.6 | | Neural Networks | | | | 4.7 | | sal Approximation and the Curse of Dimensionality | | | | 4.8 | | ng a Neural Network: Determining Weights and Biases | | | | | 4.8.1 | Choice of Loss Function | | | | | 4.8.2 | Gradient Descent | | | | 4.0 | 4.8.3 | Backpropagation Algorithm | | | | 4.9 | | cal Considerations | | | | 4.10 | | Implementation | | | | | | Implementing the Feedforward Part of a Neural Network | 98 | | | | 4.10.2 | Using Neural Networks in Sci-Kit Learn | 100 | | TABLE | OF | CON | ITEI | NTS | |-------|----|-----|------|-----| |-------|----|-----|------|-----| | | | 4.10.3 Using Neural Networks in PyTorch 105 | |----|--------------|---| | | | 4.10.4 Conclusions | | J | | 136 (1.1) | | 5 | | litional Methods 111 | | | 5.1 | K-Nearest Neighbors | | | 5.2 | K-means Clustering | | | 5.3 | Python Implementation | | | | 5.3.1 Data Preprocessing | | | | 5.3.2 K-Nearest Neighbors (KNN) | | | | 5.3.3 K-Means | | | | 5.3.4 Conclusions | | тт | · A . | pplications 127 | | II | . A | pplications 127 | | 6 | Loa | n Default Prediction 129 | | | 6.1 | Problem Setup | | | 6.2 | Dataset | | | 6.3 | Putting the Problem into the Context of the Course 131 | | | 6.4 | Setting up the Environment | | | 6.5 | Data Preprocessing | | | 6.6 | Data Exploration | | | 6.7 | Implementation of Loan Default Prediction Models 151 | | | | 6.7.1 Splitting the Data into Training and Test Sets 152 | | | | 6.7.2 Scaling Features | | | | 6.7.3 Evaluation Criertia | | | | 6.7.4 Logistic Regression | | | | 6.7.5 Decision Tree | | | | 6.7.6 Random Forest | | | | 6.7.7 XGBoost | | | | 6.7.8 Neural Network | | | 6.8 | Overview of the Results | | | 6.9 | Feature Engineering and Model Improvement | | | 6.10 | Feature Importance | | | | Conclusions | | - | тт | D ' D !'.' | | 7 | 7.1 | Ise Price Prediction 169 Problem Setup 169 | | | 7.1 | 1 | | | $7.2 \\ 7.3$ | Dataset | | | | Putting the Problem into the Context of the Course 170 Setting up the Environment | | | 7.4 | Setting up the Environment | | | 7.5 | Data Exploration | | | 7.6 | Implementation of House Price Prediction Models | | | | 7.6.1 Data Preprocessing | | | | 7.6.2 Evaluation Criertia | \mathbf{v} | | 7.6.4 | LASS | O Regress | sion | | | | | | | | | | 199 | |--------|--------|--------|-----------|------|--|--|--|--|--|--|--|--|--|-----| | | 7.6.5 | Decisi | on Tree . | | | | | | | | | | | 200 | | | 7.6.6 | Rando | m Forest | | | | | | | | | | | 202 | | | 7.6.7 | XGBo | ost | | | | | | | | | | | 204 | | | 7.6.8 | Neura | l Network | Ξ | | | | | | | | | | 205 | | 7.7 | Model | Evalua | tion | | | | | | | | | | | 207 | | 7.8 | Conclu | ısion | | | | | | | | | | | | 208 | | _ | | | | | | | | | | | | | | | | Refere | nces | | | | | | | | | | | | | 209 | TABLE OF CONTENTS vi # About this Course This course serves as an introduction to machine learning techniques used in data science. While we will cover some of the underlying theory to get a better understanding of the methods we are going to use, the emphasis will be on practical implementation. Throughout the course, we will be using the programming language Python, which is the dominant programming language in this field. The course is divided into two parts. In the first part, we will get a brief overview of the field, cover some basic concepts of machine learning and have a look at some of the most commonly used methods. In the second part, we will apply these methods to real-world problems, which hopefully will give you a starting point for your own projects. The course outline is as follows: #### Part I: Overview and Methods - 1. Introduction to Machine Learning - 2. Basic Concepts - 3. Decision Trees - 4. Neural Networks - 5. Additional Methods #### Part II: Applications - 6. Loan Default Prediction - 7. House Price Prediction The course is designed to be self-contained, meaning that you do not need any prior knowledge of machine learning to follow along. #### Useful Resources The course does not follow a particular textbook but has drawn material from several sources such as • Hastie, Tibshirani, and Friedman (2009), "The Elements of Statistical Learning" 2 About this Course - Murphy (2012), "Machine Learning: A Probabilistic Perspective" - Murphy (2022), "Probabilistic Machine Learning: An Introduction" - Murphy (2023), "Probabilistic Machine Learning: Advanced Topics" - Goodfellow, Bengio, and Courville (2016), "Deep Learning" - Bishop (2006), "Pattern Recognition And Machine Learning" - Nielsen (2019), "Neural Networks and Deep Learning" - Sutton and Barto (2018), "Reinforcement Learning: An Introduction" Note that all of these books are officially **available for free** in the form of PDFs or online versions (see the links in the references). However, you are not required to read them and, as a word of warning, the books go much deeper into the mathematical theory behind the machine learning techniques than we will in this course. Nevertheless, you may find them useful if you want to learn more about the subject. Regarding **programming in Python**, McKinney (2022) "Python for Data Analysis" might serve as a good reference book. The book is **available for free** online and covers a lot of the material we will be using in this course. You can find it here: Python for Data Analysis. #### Software Installation Notes We will be using Python for this course. For simplicity, we will be using the Anaconda distribution, which is a popular distribution of Python (and R) that aims to simplify the management of packages. We will also be using the Visual Studio Code (VS Code) as our code editor. #### **Anaconda Installation** The first step is to install the Anaconda distribution: - 1. Download the Anaconda distribution from anaconda.com. Note: If you are using a M1 Mac (or newer), you have to choose the 64-Bit (M1) Graphical Installer. With an older Intel Mac, you can choose the 64-Bit Graphical Installer. With Windows, you can choose the 64-Bit Graphical Installer (i.e., the only Windows option). - 2. Open the installer that you have downloaded in the previous step and follow the on-screen instructions. - 3. If it asks you to update Anaconda Navigator at the end, you can click Yes (to agree to the update), Yes (to quit Anaconda Navigator) and then Update Now (to actually start the update). To **confirm that the installation was successful**, you can open a *terminal window* on macOS/Linux or an *Anaconda Prompt* if you are on Windows and run the following command: #### conda --version This should display the version of Conda that you have installed. If you see an error message, the installation was likely not successful and you should ask for advice from your peers or send me an email. ``` Last login: Sat Apr 27 16:11:08 on ttys000 [(base) joel@Joels-MacBook-Pro ~ % conda --version conda 24.3.0 (base) joel@Joels-MacBook-Pro ~ % [] ``` Figure 1: Terminal Output after Anaconda
Installation ## Creating a Conda Environment Next, we want to create a new environment for this course that contains the correct Python version and all the Python packages we need. We can do this by creating a new Conda environment from the environment.yml provided on Moodle. - 1. Open a $terminal\ window$ on macOS/Linux or an $Anaconda\ Prompt$ if you are on Windows. - 2. There are two ways to create the Conda environment: **Option A**: Run the following command from the terminal or Anaconda Prompt: conda env create -f https://datascience.joelmarbet.com/environment.yml This downloads the environment.yml file automatically and creates the environment. 4 About this Course #### Option B: Download the environment.yml file manually: i. Navigate to the folder where you have downloaded the environment.yml file. On macOS/Linux, you can do this by running the following command in the terminal: #### cd ~/Downloads which will navigate to the Downloads folder in your home directory. On Windows, you can do this by running the following command in the Anaconda Prompt: ``` cd "%userprofile%/Downloads" ``` which will navigate to the Downloads folder in your user profile. Note that if you use a different path that contains space you need to put the path in quotes, e.g., cd "~/My Downloads". ii. Create a new Conda environment from the environment.yml file by running the following command in the terminal or Anaconda Prompt: ``` conda env create -f environment.yml ``` Either option will create a new Conda environment called datascience_course_cemfi with the correct Python version and all the Python packages we need for this course. Note that the installation might take a few minutes. 3. Activate the new Conda environment by running the following command in the terminal or Anaconda Prompt: ``` conda activate datascience_course_cemfi ``` To confirm that the environment was created successfully, you can run the following command in the terminal or Anaconda Prompt: ``` python --version ``` This should display Python version 3.8.8. If you see another Python version you might have forgotten to activate the environment or the environment was not created successfully. ``` 📄 Downloads — -zsh — 81×27 Last login: Sat Apr 27 17:52:53 on ttys000 (base) joel@Joels-MacBook-Pro ~ % cd ~/Downloads (base) joel@Joels-MacBook-Pro Downloads % conda env create -f environment.yml - defaults Platform: osx-64 Collecting package metadata (repodata.json): done Solving environment: done Downloading and Extracting Packages: Preparing transaction: done Verifying transaction: done Executing transaction: done To activate this environment, use $ conda activate datascience_course_cemfi To deactivate an active environment, use $ conda deactivate (base) joel@Joels-MacBook-Pro Downloads % conda activate datascience_course_cemfi (datascience_course_cemfi) \ joel@Joels-MacBook-Pro\ Downloads\ \%\ python\ --version Python 3.8.8 (datascience_course_cemfi) joel@Joels-MacBook-Pro Downloads % ``` Figure 2: Terminal Output From Environment Creation # Installing VS Code The last step is to install the Visual Studio Code (VS Code) editor: 1. Download the Visual Studio Code editor from code.visualstudio.com. 6 About this Course 2. Open the installer that you have downloaded in the previous step and follow the on-screen instructions. We also need to install some VS Code extensions that will help us with Python programming and Jupyter notebooks: - 1. Open VS Code. - 2. Click on the Extensions icon on the left sidebar (or press Cmd+Shift+X on macOS or Ctrl+Shift+X on Windows). Figure 3: Installing Extensions in VSCode - 3. Search for Python and click on the Install button for the extension that is provided by Microsoft. - 4. Search for Jupyter and click on the Install button for the extension that is provided by Microsoft. # Testing the Installation To test the installation, you can download a Juypter notebook from Moodle and open it in VS Code: - 1. Open the Jupyter notebook in VS Code. - 2. Click on Select Kernel in the top right corner of the notebook and choose the datascience_course_cemfi kernel. Figure 4: VSCode Jupyter Kernel Selection 3. Run the first cell of the notebook by clicking on the Execute Cell button next to the cell on the left. If you see the output of the cell (or a green check mark below the cell), the installation was successful. This will open a new tab in your default browser with the Jupyter notebook interface. You can then navigate to the folder where you have down8 About this Course loaded the course materials and open the notebooks from there. # Part I Overview and Methods # Chapter 1 # Introduction The hype around **artificial intelligence** (AI) reached new highs with the release of OpenAI's ChatGPT in late 2022. These drastic improvements in artificial intelligence have been fueled by **machine learning** (ML) methods that have become popular in recent years and have a **wide variety of applications** such as, for example, - Computer vision, - Speech recognition, - Data mining, and many more. These tools also have many potential applications in economics and finance and can be invaluable in extracting information from the evergrowing amounts of data available. As current (or future) Banco de España employees, you are in a unique position to work with large datasets that are often not available to the general public. Therefore, you have a unique opportunity to apply these methods to a wide range of unexplored problems. The field can be very technical, but **barriers to entry are not as high as they may seem**. This course aims to provide you with the tools to apply machine learning methods to problems in economics and finance. # 1.1 Taking Advantage of Machine Learning in Banking Supervision You might have heard of some of the well-known advances in the field of ${\bf AI}$ from recent years such as - DeepMind's AlphaGo can beat the best human Go players - OpenAI's ChatGPT responds to complex text prompts - Midjourney, DALL-E, and Stable Diffusion generate images from text Figure 1.1: Go board (Source: Wikimedia) • ... While these examples are impressive, you might wonder how these methods can help you in your work. There is a wide range of potential applications. Machine learning methods have been used **in practice** to - Predict loan or firm defaults, - Detect fraud (e.g., credit card fraud, or money laundering), - Interpret large quantities of data, or - \bullet Forecast economic variables to just name a few examples. Bank for International Settlements (2021) provides an overview of how machine learning methods have been used at central banks. The report also notes how machine learning methods can be used in the context of financial supervision These techniques can support supervisors' efficiency in: (i) covering traditional supervisory tasks (eg quality reporting, anomaly detection, sending of instructions); (ii) facilitating the assessment of micro-level fragilities; and (iii) identifying and tackling new emerging topics, such as climate-related financial risks, vulnerabilities from the Covid-19 pandemic, or the consequence of increased digitisation in finance (eg the development of fintechs). To give you a few more ideas from **academic research**, machine learning techniques have been used to, for example, ¹See https://www.bis.org/ifc/publ/ifcb57.htm for a more detailed overview. - Detect emotions in voices during press conferences after FOMC meetings (Gorodnichenko, Pham, and Talavera 2023), - Identify Monetary Policy Shocks using Natural Language Processing (Aruoba and Drechsel 2022), - Solve macroeconomic models with heterogeneous agents (Maliar, Maliar, and Winant 2021; Fernández-Villaverde, Hurtado, and Nuño 2023; Fernández-Villaverde et al. 2024; Kase, Melosi, and Rottner 2022), or - Estimate structural models with the help of neural networks (Kaji, Manresa, and Pouliot 2023). In this course, we will only be able to scratch the surface of the field. However, I hope to provide you with the tools to get you started with machine learning and to apply these methods to novel problems. #### 1.2 What Is Machine Learning? You might already have some idea of what machine learning is. In this section, we will provide a more formal definition, distinguish between machine learning, artificial intelligence, and deep learning, and discuss the relation to statistics and econometrics. #### 1.2.1 Definition Let's start with the straightforward definition provided by Murphy (2012) [...] a set of methods that can automatically detect patterns in data, and then use the uncovered patterns to predict future data, or to perform other kinds of decision making under uncertainty [...] Therefore, machine learning provides a range of methods for data analysis. In that sense, it is **similar to statistics or econometrics**. A popular, albeit more technical, definition of ML is due to Mitchell (1997): A computer program is said to learn from experience E with respect to some class of tasks T, and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. In the context of this course, experience E is given by a dataset that we feed into a machine-learning algorithm, tasks T are usually some form of prediction that we would like to perform (e.g., loan default prediction), and the performance measure P is the measure assessing the accuracy of our predictions. #### 1.2.2 Common Terminology Artificial intelligence (AI), machine learning (ML), and deep learning (DL) are often used interchangeably in the media. However, they describe more narrow subfields (Microsoft 2024): Figure 1.2: Artificial intelligence vs. Machine Learning vs. Deep Learning - Artificial Intelligence (AI): Any method allowing computers to imitate human behavior. - Machine Learning (ML): A subset of AI including methods that allow machines to improve at tasks with experience. - **Deep Learning (DL)**: A subset of ML using neural networks with many
layers allowing machines to learn how to perform tasks. More recently, with the rise of large language models (LLMs) such as Chat-GPT, the term Generative AI has also become popular. Generative AI refers to AI models that can generate new content, such as text, images, or music, based on the patterns learned from their training data. ChatGPT is an example of a generative AI model that generates human-like text responses based on the input it receives. In this course, we will be more concerned with what is sometimes called **Predictive AI**. Predictive AI refers to machine learning models used to make predictions or classifications based on input data, such as predicting loan defaults or classifying images. A term you may also encounter is **Artificial General Intelligence (AGI)**, which refers to highly autonomous systems that possess the ability to understand, learn, and apply knowledge across a wide range of tasks at a level comparable to human intelligence. Unlike current AI systems, which are specialized for specific tasks, AGI would be capable of general reasoning and problem-solving. While AGI is a topic of significant research and debate, it remains largely theoretical at this stage.² Please note that AGI and related concepts are beyond the scope of this course and will not be covered. $^{^2{\}rm For}$ more information, see, e.g., https://cloud.google.com/discover/what-is-artificial-general-intelligence?hl=en. #### 1.2.3 Relation to Statistics and Econometrics We have already mentioned that machine learning is similar to statistics and econometrics, in the sense that it provides a set of methods for data analysis. The **focus** of machine learning is more **on prediction rather than causality** meaning that in machine learning we are often interested in whether we can predict A given B rather than whether B truly causes A. For example, we could probably predict the sale of sunburn lotion on a day given the sales of ice cream on the previous day. However, this does not mean that ice cream sales cause sunburn lotion sales, it is just that the sunny weather on the first day causes both. Varian (2014) provides another example showing the difference between prediction and causality: A classic example: there are often more police in precincts with high crime, but that does not imply that increasing the number of police in a precinct would increase crime. [...] If our data were generated by policymakers who assigned police to areas with high crime, then the observed relationship between police and crime rates could be highly predictive for the *historical* data but not useful in predicting the causal impact of explicitly assigning additional police to a precinct. Nevertheless, leaving problems aside where we are interested in causality, there is still a very large range of problems where we are interested in mere prediction, such as loan default prediction, or credit card fraud detection. # 1.3 Why Has Machine Learning Become Popular Only Recently? Early contributions to the field reach back at least to McCulloch and Pitts (1943) and Rosenblatt (1958). They attempted to find mathematical representations of information processing in biological systems (Bishop 2006). The field has grown substantially mainly in recent years due to - Advances in **computational power** of personal computers - Increased availability of large datasets \rightarrow "big data" - Improvements in algorithms The need for large data sets still limits the applicability to certain fields. For example, in macroeconomic forecasting, we usually only have quarterly data for 40-50 years. Conventional time series methods (e.g., ARIMA) often still tend to perform better than ML methods (e.g., neural networks). #### 1.4 Types of Learning Machine learning methods are **commonly distinguished based on** the **tasks that we would like to perform**, and the **data that we have access to for learning** how to perform said task. For **example**, our task might be to figure out whether a credit card transaction is fraudulent or not. Based on the data we have access to, two different types of learning might be appropriate: - We *know* which transactions are fraudulent meaning that we need to learn a function that maps the transaction data (e.g., value of transaction, location, etc.) to the label "fraudulent" or "not fraudulent". This is an example of *supervised learning*. - We do not know whether they are fraudulent or not meaning that we might want to find clusters in the data that group similar transactions. This is an example of unsupervised learning. More generally, ML methods are commonly categorized into - Supervised Learning: Learn function y = f(x) from data that you observe for x and y - Unsupervised Learning: "Make sense" of observed data x - Reinforcement Learning: Learn how to interact with the environment The focus of this course will be on supervised learning, but we will also have a look at some unsupervised learning techniques if time allows. Let's have a closer look at the three types of learning. #### i Types of Learning in Practice Machine learning models might **combine different types of learning**. For example, ChatGPT is trained using a combination of self-supervised (a form of unsupervised learning), supervised and reinforcement learning. Furthermore, some machine learning methods, such as neural networks, might be used as part of different types of learning. #### 1.4.1 Supervised Learning **Supervised learning** is probably the **most common** form of machine learning. In supervised learning, we have a **training dataset** consisting of input-output pairs (x_n, y_n) for n = 1, ..., N. The goal is to learn a function f that maps inputs x to outputs y. The type of function f might be incredibly complex, e.g. - From images of cats and dogs x to a classification of the image y (\rightarrow Figure 1.3) - From text input x to some coherent text response $y (\rightarrow \text{ChatGPT})$ - From text input x to a generated image $y (\rightarrow \text{Midjourney})$ • From bank loan application form x to a loan decision y Regarding **terminology**, note that sometimes - Inputs x are called features, predictors, or covariates, - Outputs y are called labels, targets, or responses. Based on the **type of output**, we can distinguish between - Classification: Output y is in a set of mutually exclusive labels (i.e., classes), i.e. $\mathcal{Y} = \{1, 2, 3, \dots, C\}$ - **Regression**: Output y is a real-valued quantity, i.e. $y \in \mathbb{R}$ Let's have a closer look at some examples of classification and regression tasks. #### Classification Figure 1.3: Training a machine learning algorithm to classify images of cats and dogs Figure 1.3 shows an example of a **binary classification task**. The algorithm is trained on a dataset of images of cats and dogs. The goal is to predict the label (i.e., "cat" or "dog") of a new image (new in the sense that the images were not part of the training dataset). After training, the algorithm can predict the label of new images with a certain degree of accuracy. However, if you give the algorithm an image of, e.g., a horse it might mistakenly predict that it is a dog because the algorithm has never seen an image like that before and because it has been trained only for binary classification (it only knows two kinds of classes, "cats" and "dogs"). In this example, x would be an image in the training dataset and y would be the label of that image. Extending the training dataset to also include images of horses with a corresponding label would turn the tasks into multiclass classification. #### Regression Figure 1.4: Linear and Polynomial Regression In **regression tasks**, the variable that we want to predict is continuous. Linear and polynomial regression in Figure 1.4 are a form of supervised learning. Thus, you are already familiar with some basic ML techniques from the statistics and econometrics courses. Another common way to solve regression tasks is to use **neural networks**, which can learn **highly non-linear relationships**. In contrast to, for example, polynomial regression, neural networks can learn these relationships **without** the **need to specify the functional form** (i.e., whether it is quadratic as in Figure 1.4) of the relationship. This makes them very flexible and powerful tools. We will have a look at neural networks later on. #### 1.4.2 Unsupervised Learning An issue with supervised learning is that we need labeled data which is often not available. **Unsupervised learning** is used to **explore data** and to **find patterns** that are not immediately obvious. For example, unsupervised learning could be used to find groups of customers with similar purchasing behavior in a dataset of customer transactions. Therefore, the task is to learn some structure in the data x. Note that we only have features in the dataset and no labels, i.e., the training dataset consists of N data points x_n . Unsupervised learning tasks could be, for example, - Finding clusters in the data, i.e. finding data points that are "similar" (→ clustering) - Finding latent factors that capture the "essence" of the data (→ dimensionality reduction) Let's have a look at some examples of clustering and dimensionality reduction. Figure 1.5: Clusters in data on iris flowers (left-hand side: true classes, right-hand side: k-means clusters) #### Clustering Clustering is a form of unsupervised learning where the goal is to group data points into so-called clusters based on their similarity. We want to find clusters in the data such that observations within a cluster are more similar to each other than to observations in other clusters. Figure 1.5 shows an example of a **clustering task**. The dataset consists of measurements of sepal (and petal) length and width of three species of iris flowers. The goal is to find clusters based on just the similarity in sepal and petal lengths and widths without relying on
information about the actual iris flower species. The left-hand panel of Figure 1.5, shows the actual classification of the iris flowers. The right-hand side shows the result of a k-means clustering algorithm that groups the data points into three clusters. #### **Dimensionality Reduction** Suppose you observe data on house prices and many variables describing each house. You might observe, e.g., property size, number of rooms, room sizes, proximity to the closest supermarket, and hundreds of variables more. A ML algorithm (e.g., principal component analysis or autoencoders) could find the **unobserved factors that determine house prices**. These factors sometimes (but not always) have an interpretation. For example, a factor driving house prices could be *amenities*. This factor could summarize variables such as proximity to the closest supermarket, number of nearby restaurants, etc. Ultimately, **hundreds of explanatory variables** in the data set might be **represented** by a small number of factors. Figure 1.6: Petal vs Sepal (Source: Wikimedia) #### 1.4.3 Reinforcement Learning In **reinforcement learning**, an agent learns how to interact with its environment. The agent receives feedback in the form of rewards or penalties for its actions. The goal is to learn a policy that maximizes the total reward. For example, a machine could learn to play chess using reinforcement learning - **Input** x would be the current position (i.e., the position of pieces on the board) - Action a would be the next move to make given the position - One also needs to define a **reward** (e.g., winning the game at the end) - Goal is then to find $a = \pi(x)$ to maximize the reward This is also the principle behind **AlphaGo** that learned how to play Go. Another example is MarI/O which learned how to play Super Mario World. The algorithm learns to play the game by receiving feedback in the form of rewards (e.g., points for collecting coins, penalties for dying) and then improves in playing the game by "an advanced form of trial and error". In this course, we will focus on supervised learning. However, we will look at some unsupervised learning techniques if time allows. Reinforcement learning is going beyond the scope of this course and will not be covered. Figure 1.7: MarI/O playing Super Mario World (Source: YouTube) #### i Mini-Exercise Are the following tasks examples of supervised, unsupervised, or reinforcement learning? - 1. Predicting the price of a house based on its size and location (given a dataset of house prices and features). - 2. Finding groups of customers with similar purchasing behavior (given a dataset of customer transactions and customer characteristics). - 3. Detecting fraudulent credit card transactions (given a dataset of unlabeled credit card transactions). - 4. Detecting fraudulent credit card transactions (given a dataset of *labeled* credit card transactions). - 5. Recognizing handwritten digits in the MNIST dataset (see next section). - 6. Grouping news articles by topic based only on their content (without knowing the topics in advance). - 7. Predicting whether a customer will cancel their subscription next month, given historical data on customer behavior and cancellations. - 8. Classifying emails as spam or not spam, using a dataset where each email is labeled as spam or not. - 9. Training a robot to navigate a maze by receiving rewards for reaching the exit and penalties for hitting walls. #### 1.5 Popular Practice Datasets There are many publicly available datasets that you can use to learn how to implement machine learning methods. Here are some well-known platforms with a large collection of datasets - Kaggle, - HuggingFace, and - OpenML. Another good source for practice datasets is the collection of datasets provided by scikit-learn. These datasets can be easily loaded into Python from the scikit-learn package. Furthermore, Murphy (2022) provides an overview of some well-known datasets that are often used in machine learning. For example, MNIST is a dataset of handwritten digits (see Figure 1.8) that is often used to test machine learning algorithms. The dataset consists of 60,000 training images and 10,000 test images. Each image is a 28x28 pixel image of a handwritten digit. The goal is to predict the digit in the image. ``` 0000000000000000 222222222 2 333 3 3 3 3 3 3 333 4 5 5 5 S 5 5 5 6 6666 6 6 6 77777 7 7 77 7 7 7 8 8 8 999 ``` Figure 1.8: MNIST (Source: Wikimedia) # Chapter 2 # **Basic Concepts** Now that we have a basic understanding of what machine learning is, let's dive into some concepts that are essential for understanding machine learning models. The **focus** of this section will be on **supervised learning** models. We will start with placing linear regression and logistic regression in a machine-learning context. We will then discuss how to evaluate regression and classification models and introduce the concepts of generalization and overfitting. Finally, we will implement some of these concepts in Python. ## 2.1 Linear Regression in a ML Context Figure 2.1: Linear Regression With a Single Feature x (i.e., m=1) and Bias b=0 (Note that this Plot is interactive in the HTML version) You have already extensively studied linear regressions in the statistics and econometrics course, so we will not discuss it in much detail. In machine learning, it is common to talk about **weights** w_i and **biases** b_i instead of coefficients β_i and intercept β_0 , i.e., the linear regression model would be written as $$y_n = b + \sum_{i=1}^m w_i x_{i,n} + \varepsilon_n \qquad n = 1, \dots, N$$ where w_i are the weights, b is the bias and N is the sample size. The weights and biases are found by **minimizing the empirical risk function or mean squared error (MSE) loss**, which is a measure of how well the model fits the data. $$\mathrm{MSE}(y,x;w,b) = \frac{1}{N} \sum_{n=1}^{N} (y_n - \hat{y}_n)^2$$ where y_n is the true value, \hat{y}_n is the predicted (or fitted) value for observation n. In the case of linear regression, there is a closed-form solution for the weights and biases that minimize the MSE. However, the weights and biases have to be found numerically in many other machine learning models since there is no closed-form solution. One can think of this, as the machine learning algorithm automatically moving a slider for the slope Figure 2.1 until the loss is minimized (i.e., the red dot is at the lowest possible point) and the model fits the data as well as possible. ## 2.2 Logistic Regression in a ML Context Logistic regression is a widely used **classification model** p(y|x;w,b) where $x \in \mathbb{R}^m$ is an input vector, and $y \in \{0,1,\dots,C\}$ is a class label. We will focus on the binary case, meaning that $y \in \{0,1\}$ but it is also possible to extend this to more than two classes. The probability that y_n is equal to 1 for observation n is given by $$p(y_n = 1 | x_n; w, b) = \frac{1}{1 + \exp(-b - \sum_{i=1}^m w_i x_{i,n})}$$ where $w = [w_1, \dots, w_n]' \in \mathbb{R}^m$ is a weight vector, and b is a bias term. Combining the probabilities for each observation n, we can write the **likelihood function** as $$\mathcal{L}(w,b) = \prod_{n=1}^{N} p(y_n = 1 | x_n; w, b)^{y_n} \left(1 - p(y_n = 1 | x_n; w, b)\right)^{1 - y_n}$$ or taking the natural logarithm of the likelihood function, we get the log-likelihood function $$\log \mathcal{L}(w,b) = \sum_{n=1}^{N} y_n \log p(y_n = 1 | x_n; w, b) + (1-y_n) \log \left(1 - p(y_n = 1 | x_n; w, b)\right).$$ To find the weights and biases, we need to numerically maximize the log-likelihood function (or minimize $-\log \mathcal{L}(w,b)$). Adding a classification threshold t to a logistic regression yields a decision rule of the form $$\hat{y} = 1 \Leftrightarrow p(y = 1|x; w, b) > t,$$ i.e., the model predicts that y = 1 if p(y = 1|x; w, b) > t. Figure 2.2: Logistic Regression With a Single Feature x (i.e., m=1) and Bias b=0 (Note that this Plot is interactive in the HTML version) #### ⚠ Terminology: Regression vs. Classification Do not get confused about the fact that it is called logistic regression but is used for classification tasks. Logistic regression provides an estimate of the probability that y=1 for given x, i.e., an estimate for p(y=1|x;w,b). To turn, this into a classification model, we also need a **classification threshold** value for p(y=1|x;w,b) above which we classify an observation as y=1. Figure 2.2 shows an interactive example of a logistic regression model. The left-hand side shows the data points and the regression line. The right-hand side shows the log-likelihood function with the red dot showing the value of the log-likelihood for the current value of w. The goal is to find the weight w in the regression line that maximizes the log-likelihood function (we assumed b=0 for simplicity). If you enable the classification threshold t, a data point is shown as dark blue if p(y=1|x;w,b)>t, otherwise, it is shown in light blue. Note how the value of the threshold affects the classification of the data points for points in the middle. Essentially, for each classification threshold, we have a different classification model. But how do we choose the classification threshold? This is a topic that we will discuss in the next section. Logistic regression belongs to the class of **generalized linear models** with logit as the link function. We could write $$\log\left(\frac{p}{1-p}\right) = b + \sum_{i=1}^{m} w_i x_{i,n}$$ where $p = p(y_n = 1 | x_n; w, b)$, which separates the linear part on the right-hand side from the logit on the left-hand side. Figure 2.3: Decision Boundary - Logistic Regression with Features x_1 and x_2 (i.e., m=2) (Note that this Plot is interactive in the HTML version) This linearity also shows up in the **linear decision boundary** produced by a logistic regression in Figure 2.3. A decision boundary shows how a machine-learning model separates different classes
in our data, i.e, how it would classify an arbitrary combination of (x_1, x_2) . This linearity of the decision boundary can pose a problem if the two classes are not linearly separable as in Figure 2.3. We can remedy this issue by including higher order terms for x_1 and x_2 such as x_2^2 or x_1^3 , which is a type of **feature engineering**. However, there are many forms of non-linearity that the decision boundary can have and we cannot try all of them. You might know the following phrase from a Tolstoy book "Happy families are all alike; every unhappy family is unhappy in its own way." In the context of non-linear functions, people sometimes say "Linear functions are all alike; every non-linear function is non-linear in its own way." During the course, we will learn more advanced machine-learning techniques that can produce non-linear decision boundaries without the need for feature engineering. #### 2.3 Model Evaluation Suppose our machine learning model has learned the weights and biases that minimize the loss function. How do we know if the model is any good? In this section, we will discuss how to evaluate regression and classification models. #### 2.3.1 Regression Models In the case of regression models, we can use the **mean squared error (MSE)** as a measure of how well the model fits the data. The MSE is defined as MSE = $$\frac{1}{N} \sum_{n=1}^{N} (y_n - \hat{y}_n)^2$$, where y_n is the true value, \hat{y}_n is the predicted value for observation n and N is the sample size. A low MSE indicates a good fit, while a high MSE indicates a poor fit. In the ideal case, the MSE is zero, meaning that the model perfectly fits the data. Related to the MSE is the **root mean squared error** (**RMSE**), which is the square root of the MSE $$RMSE = \sqrt{MSE}$$. The RMSE is in the same unit as the target variable y and is easier to interpret than the MSE. Regression models are sometimes also evaluated based on the **coefficient of** determination \mathbb{R}^2 . The \mathbb{R}^2 is defined as $$R^2 = 1 - \frac{\sum_{n=1}^{N} (y_n - \hat{y}_n)^2}{\sum_{n=1}^{N} (y_n - \bar{y})^2},$$ where \bar{y} is the mean of the true values y_n . The R^2 is a measure of how well the model fits the data compared to a simple model that predicts the mean of the true values for all observations. The R^2 can take values between $-\infty$ and 1. A value of 1 indicates a perfect fit, while a value of 0 indicates that the model does not perform better than the simple model that predicts the mean of the true values for all observations. Note that the R^2 is a normalized version of the MSE $$R^2 = 1 - \frac{N \times \text{MSE}}{\sum_{n=1}^N (y_n - \bar{y})^2}. \label{eq:R2}$$ Thus, we would rank models based on the \mathbb{R}^2 in the same way as we would rank them based on the MSE or the RMSE. There are many more metrics but at this stage, we will only look at one more: the **mean-absolute-error (MAE)**. The MAE is defined as MAE = $$\frac{1}{N} \sum_{n=1}^{N} |y_n - \hat{y}_n|$$. The MAE is the average of the absolute differences between the true values and the predicted values. Note that the MAE does not penalize large errors as much as the MSE does. #### 2.3.2 Classification Models In the case of classification models, we need different metrics to evaluate the performance of the model. We will discuss some of the most common metrics in the following subsections. #### **Basic Metrics** A key measure to evaluate a classification model, both binary and multiclass classification, is to look at how often it predicts the correct class. This is called the **accuracy** of a model $$\label{eq:accuracy} \text{Accuracy} = \frac{\text{Number of correct predictions}}{\text{Total number of predictions}}.$$ Related to this, one could also compute the misclassification rate $$\label{eq:missclassification} \mbox{Missclassification Rate} = \frac{\mbox{Number of incorrect predictions}}{\mbox{Total number of predictions}}.$$ While these measures are probably the most intuitive measures to assess the performance of a classification model, they can be misleading in some cases. For example, if we have a dataset with 95% of the observations in class 1 and 5% in class 0, a model that always predicts y = 1 (class 1) would have an accuracy of 95%. However, this model would not be very useful. #### **Confusion Matrices** In this and the following subsection, we focus on binary classification problems. Let \hat{y} denote the predicted class and y the true class. In a binary classification problem, we can make **two types of errors**. First, we can make an error because we predicted $\hat{y} = 1$ when y = 0, which is called a **false positive** (or a "false alarm"). Sometimes this is also called a **type I error**. Second, we can make an error because we $\hat{y} = 0$ when y = 1, which is called a **false negative** (or a "missed detection"). Sometimes this is referred to as a **type II error**. We can summarize the predictions of a classification model in a **confusion matrix** as seen in Figure 2.4. The confusion matrix is a 2×2 matrix that shows the number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) of a binary classification model. Figure 2.4: Confusion matrix There is a **tradeoff** between the two types of errors. For example, you could get fewer false negatives by predicting $\hat{y} = 1$ more often, but this would increase the number of false positives. In the extreme case, if you only predict $\hat{y} = 1$ for all observations, you would have no false negatives at all. However, you would also have no true negatives making the model of questionable usefulness. #### Confusion Matrix: Dependence on Classification Threshold t The number of true positives, true negatives, false positives, and false negatives in the confusion matrix depends on the classification threshold t. Note that we can compute the **accuracy** measure as a function of true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) $$\label{eq:accuracy} Accuracy = \frac{TP + TN}{TP + TN + FP + FN},$$ while the missclassification rate is given by $$Miss classification Rate = \frac{FP + FN}{TP + TN + FP + FN}.$$ Another useful measure that can be derived from the confusion matrix is the **precision**. It measures the fraction of positive predictions that were actually correct, i.e., $$Precision = \frac{TP}{TP + FP}$$ The true positive rate (TPR) or recall or sensitivity measures the fraction of actual positives that were correctly predicted, i.e. $$Recall = \frac{TP}{TP + FN}.$$ Analogously, **true negative rate (TNR)** or **specificity** measures the fraction of actual negatives that were correctly predicted, i.e., $$TNR = \frac{TN}{FP + TN}$$ Finally, the **false positive rate (FPR)** measures the fraction of actual negatives that were incorrectly predicted to be positive, i.e., $$\mathrm{FPR} = 1 - \mathrm{TNR} = \frac{\mathrm{FP}}{\mathrm{FP} + \mathrm{TN}}$$ Note that all of these measures can be computed for a given classification threshold t. They capture different aspects of the quality of the predictions of a classification model. #### i Multiclass Classification In the case of multiclass classification, the confusion matrix is a $K \times K$ matrix, where K is the number of classes. The diagonal elements of the confusion matrix represent the number of correct predictions for each class, while the off-diagonal elements represent the number of incorrect predictions. Note that we can binarize multiclass classification problems, which allows us to use the same metrics as in binary classification. Two such binarization schemes are - One-vs-Rest (or One-vs-All): In this scheme, we train K binary classifiers, one for each class to distinguish it from all other classes. We can then use the class with the highest score as the predicted class for a new observation. - One-vs-One: In this scheme, we train K(K-1)/2 binary classifiers, one for each pair of classes. We can then use a majority vote to determine the class of a new observation. # Receiver Operating Characteristic (ROC) Curves and Area Under the Curve (AUC) Figure 2.5 shows a Receiver Operating Characteristic (ROC) curve which is a graphical representation of the tradeoff between the true positive rate (TPR) and the false positive rate (FPR) for different classification thresholds. The ROC curve is a useful tool to visualize the performance of a classification model. The diagonal line in the ROC curve represents a random classifier. A classifier that is better than random will have a ROC curve above the diagonal line. The closer the ROC curve is to the top-left corner, the better the classifier. The Area Under the Curve (AUC) of the ROC curve is a measure to compare different classification models. The AUC is a value between 0 and 1, where a value of 1 indicates a perfect classifier and a value of 0.5 indicates a random classifier. Figure 2.6 shows the AUC of a classifier as the shaded area under the ROC curve. Note that the AUC summarizes the ROC curve, which itself represents the quality of predictions of our classification model at different thresholds, in a single number. # 2.4 Generalization and Overfitting Typically, we are not just interested in having a good fit for the dataset on which we are training a classification (or regression) model, after all, we already have the actual classes or realization of predicted variables in our dataset. What we are really interested in is that a classification or regression model generalizes to new data. However, since the models that we are using are highly flexible, it can be the case Figure 2.5: Receiver Operating Characteristic (ROC) Curve Figure 2.6: Area Under the Curve (AUC) that we have a very high accuracy during the training of our model but it does not provide good predictions when used on new data. This situation is called **overfitting**: we have a very good
fit in our training dataset, but predictions for new data inputs are bad. Figure 2.7: Examples of Overfitting and Underfitting Figure 2.7 provides examples of overfitting and underfitting. The blue dots represent the training data x and y, the orange curve represents the fit of the model to the training data. The left plot shows an example of **underfitting**: the model is too simple to capture the underlying structure of the data. The middle plot shows a "good fit": the model captures the underlying structure of the data. The right plot shows an example of **overfitting**: the model is too complex and captures the noise in the data. # 2.4.1 Bias-Variance Tradeoff The concepts of **bias** and **variance** are useful to understand the tradeoff between underfitting and overfitting. Suppose that data is generated from the true model $Y = f(X) + \epsilon$, where ϵ is a random error term such that $\mathbb{E}[\epsilon] = 0$ and $\text{Var}[\epsilon] = \sigma^2$. Let $\hat{f}(x)$ be the prediction of the model at x. One can show that the expected prediction error (or generalization error) of a model can be decomposed into three parts $$\mathrm{EPE}(x_0) = \mathbb{E}[(Y - \hat{f}(x_0))^2 | X = x_0] = \mathrm{Bias}^2(\hat{f}(x_0)) + \mathrm{Var}(\hat{f}(x_0)) + \sigma^2,$$ where $\operatorname{Bias}(\hat{f}(x_0)) = \mathbb{E}[\hat{f}(x_0)] - f(x_0)$ is the bias at x_0 , $\operatorname{Var}(\hat{f}(x_0)) = \mathbb{E}[\hat{f}(x_0)^2] - \mathbb{E}[\hat{f}(x_0)]^2$ is the variance at x_0 , and σ^2 is the irreducible error, i.e., the error that cannot be reduced by any model. As model complexity increases, the bias tends to decrease, but the variance tends to increase. The following quote from Cornell lecture notes summarizes the bias-variance tradeoff well: Variance: Captures how much your classifier changes if you train on a different training set. How "over-specialized" is your classifier to a particular training set (overfitting)? If we have the best possible model for our training data, how far off are we from the average classifier? Bias: What is the inherent error that you obtain from your classifier even with infinite training data? This is due to your classifier being "biased" to a particular kind of solution (e.g. linear classifier). In other words, bias is inherent to your model. Noise: How big is the data-intrinsic noise? This error measures ambiguity due to your data distribution and feature representation. You can never beat this, it is an aspect of the data. Figure 2.8: Model Complexity and Generalization Error (adapted from Hastie, Tibshirani, and Friedman 2009) Figure 2.8 shows the relationship between the model complexity and the prediction error. A more complex model can reduce the prediction error only up to a certain point. After this point, the model starts to overfit the training data (it learns noise in the data), and the prediction error for the test data (i.e., data not used for model training) increases. Ideally, we would like to find the model complexity that minimizes the prediction error for the test data. # 2.4.2 Regularization One approach to avoid overfitting is to use **regularization**. Regularization adds a penalty term to the loss function that penalizes large weights. The most common regularization techniques are **L1 regularization** and **L2 regularization**. L1 regularization adds the sum of the absolute values of the weights to the loss function, while L2 regularization adds the sum of the squared weights to the loss function. These techniques are applicable across a large range of ML models and depend- ing on the type of model additional regularization techniques might be available. For example, in neural networks, **dropout regularization** is a common regularization technique that randomly removes a set of artificial neurons during training. In the context of linear regressions, L1 regularization is also called **LASSO** regression. The loss function of LASSO regression is given by $$Loss = MSE(y, x; w) + \lambda \sum_{i=1}^{m} |w_i|,$$ where MSE(y, x; w) refers to the mean squared error (the standard loss function of a linear regression), λ is a hyperparameter that controls the strength of the regularization. Note that LASSO regression can also be used for **feature selection**, as it tends to set the weights of irrelevant features to zero. Figure 2.9 shows the LASSO regression loss for different levels of λ . Figure 2.9: LASSO Regression Loss for Different Levels of λ An L2 regularization in a linear regression context is called a **Ridge regression**. Its loss function is given by $$\operatorname{Loss} = \operatorname{MSE}(y, x; w) + \lambda \sum_{i=1}^{m} w_i^2.$$ We will have a closer look at regularization in the application sections. For now, it is important to understand that regularization works by constraining the weights of the model (i.e., keeping the weights small), which can help to avoid overfitting (which might require some weights to be very large). Figure 2.10 shows the Ridge regression loss for different levels of λ . Note how the Ridge regression loss is smoother than the LASSO regression loss and that the weights are never set to exactly zero but just get closer and closer to zero. Figure 2.10: Ridge Regression Loss for Different Levels of λ ## 2.4.3 Training, Validation, and Test Datasets Regularization discussed in the previous section is a method to directly prevent overfitting. However, another approach to the issues is to adjust our evaluation procedure in a way that allows us to detect overfitting. To do this, we can split the dataset into several parts. The first option shown in Figure 2.11 is to split the dataset into a training dataset and a test dataset. The training dataset is used to train the model, while the test dataset is used to evaluate the model. Why does this help to detect overfitting? If the model performs well on the training dataset but poorly on the test dataset, this is a sign of overfitting. If the model performs well on the test dataset, this is a sign that the model generalizes well to new data. # Difference with Terminology in Econometrics/Statistics In econometrics/statistics, it is more common to talk about **in-sample** and **out-of-sample** performance. The idea is the same: the in-sample performance is the performance of the model on the training dataset, while the out-of-sample performance is the performance of the model on the test dataset. Figure 2.11: Option A - Splitting the Whole Dataset into Training, and Test Datasets The second option shown in Figure 2.12 is to split the dataset into a **training dataset**, a **validation dataset**, and a **test dataset**. The training dataset is used to train the model, the validation dataset is used to tune the hyperparameters of the model, and the test dataset is used to evaluate the model. Figure 2.12: Option B - Splitting the Whole Dataset into Training, Test, and Validation Datasets Common splits are 75% training and 30% test, or 80% training and 20% test in Option A. In Option B, a common split is 70% training, 15% validation, and 15% test. # 2.4.4 Cross-Validation Another approach to detect overfitting is to use **cross-validation**. There are different types of cross-validation but **k-fold cross-validation** is probably the most common. In k-fold cross-validation, shown in Figure 2.13, the dataset is split into k parts (called **folds**). The model is trained on k-1 folds and evaluated on the remaining fold. This process is repeated k times, each time using a different fold as the test fold. The performance of the model is then averaged over the k iterations. In practice, k=10 is a common choice. If we set k=N, where N is the number of observations in the dataset, we call this **leave-one-out cross-validation** or **LOOCV**. The advantage of cross-validation is that it allows us to use all the data for training and testing. The disadvantage is that it is computationally more expensive than a simple training-test split. Figure 2.13: 5-Fold Cross-Validation # Mini-Exercise Implement a 5-fold cross-validation for the logistic regression model in the Python example below. Use the cross_val_score function from the sklearn.model_selection module. # 2.5 Python Implementation Let's have a look at how to implement a logistic regression model in Python. First, we need to import the required packages ``` import pandas as pd import numpy as np ``` ``` import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score, recall_score, precision_score, roc_curve pd.set_option('display.max_columns', 50) # Display up to 50 columns ``` Let's download the dataset automatically, unzip it, and place it in a folder called data if you haven't done so already ``` from io import BytesIO from urllib.request import urlopen from zipfile import ZipFile import os.path # Check if the file exists if not os.path.isfile('data/card_transdata.csv'): print('Downloading dataset...') # Define the dataset to be downloaded zipurl = 'https://www.kaggle.com/api/v1/datasets/download/dh_ anushnarayananr/credit-card-fraud¹ # Download and unzip the dataset in the data folder with urlopen(zipurl) as zipresp: with ZipFile(BytesIO(zipresp.read())) as zfile: zfile.extractall('data') print('DONE!') else: print('Dataset already downloaded!') ``` Downloading dataset... DONE! Then, we can load the data into a DataFrame using the read_csv function from the pandas library ``` df = pd.read_csv('data/card_transdata.csv') ``` Note that it is common to call this variable df which is short for DataFrame. This is a dataset of credit card transactions from Kaggle.com. The target variable y is fraud, which indicates whether the transaction is
fraudulent or not. The other variables are the features x of the transactions. # 2.5.1 Data Exploration & Preprocessing The first step whenever you load a new dataset is to familiarize yourself with it. You need to understand what the variables represent, what the target variable is, and what the data looks like. This is called **data exploration**. Depending on the dataset, you might need to preprocess it (e.g., check for missing values and duplicates, or create new variables) before you can use it to train a machine-learning model. This is called **data preprocessing**. #### **Basic Dataframe Operations** Let's see how many rows and columns the dataset has ## df.shape # (1000000, 8) The dataset has 1 million rows (observations) and 8 columns (variables)! Now, let's have a look at the first few rows of the dataset with the head() method #### df.head().T | | 0 | 1 | 2 | 3 | 4 | |--------------------------------|-----------|-----------|----------|----------|-----------| | distance_from_home | 57.877857 | 10.829943 | 5.091079 | 2.247564 | 44.190936 | | distance_from_last_transaction | 0.311140 | 0.175592 | 0.805153 | 5.600044 | 0.566486 | | ratio_to_median_purchase_price | 1.945940 | 1.294219 | 0.427715 | 0.362663 | 2.222767 | | repeat_retailer | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | | used_chip | 1.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | | used_pin_number | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | | online_order | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | | fraud | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | If you would like to see more entries in the dataset, you can use the head() method with an argument corresponding to the number of rows, e.g., ### df.head(20) | | distance_from_home | $distance_from_last_transaction$ | ratio_to_median_purchase_price | re | |---|--------------------|-------------------------------------|--------------------------------|----| | 0 | 57.877857 | 0.311140 | 1.945940 | 1 | | 1 | 10.829943 | 0.175592 | 1.294219 | 1 | | 2 | 5.091079 | 0.805153 | 0.427715 | 1 | | | distance_from_home | $distance_from_last_transaction$ | ratio_to_median_purchase_price | repeat_retaile | |----|--------------------|-------------------------------------|--------------------------------|----------------| | 3 | 2.247564 | 5.600044 | 0.362663 | 1.0 | | 4 | 44.190936 | 0.566486 | 2.222767 | 1.0 | | 5 | 5.586408 | 13.261073 | 0.064768 | 1.0 | | 6 | 3.724019 | 0.956838 | 0.278465 | 1.0 | | 7 | 4.848247 | 0.320735 | 1.273050 | 1.0 | | 8 | 0.876632 | 2.503609 | 1.516999 | 0.0 | | 9 | 8.839047 | 2.970512 | 2.361683 | 1.0 | | 10 | 14.263530 | 0.158758 | 1.136102 | 1.0 | | 11 | 13.592368 | 0.240540 | 1.370330 | 1.0 | | 12 | 765.282559 | 0.371562 | 0.551245 | 1.0 | | 13 | 2.131956 | 56.372401 | 6.358667 | 1.0 | | 14 | 13.955972 | 0.271522 | 2.798901 | 1.0 | | 15 | 179.665148 | 0.120920 | 0.535640 | 1.0 | | 16 | 114.519789 | 0.707003 | 0.516990 | 1.0 | | 17 | 3.589649 | 6.247458 | 1.846451 | 1.0 | | 18 | 11.085152 | 34.661351 | 2.530758 | 1.0 | | 19 | 6.194671 | 1.142014 | 0.307217 | 1.0 | Note that analogously you can also use the tail() method to see the last few rows of the dataset. We can also check what the variables in our dataset are called # df.columns and the data types of the variables # df.dtypes ``` distance_from_home float64 {\tt distance_from_last_transaction} float64 ratio_to_median_purchase_price float64 repeat_retailer float64 used_chip float64 used_pin_number float64 online_order float64 float64 fraud ``` dtype: object In this case, all our variables are floating-point numbers (float). This means that they are numbers that have a fractional part such as 1.5, 3.14, etc. The number after float, 64 in this case refers to the number of bits that are used to represent this number in the computer's memory. With 64 bits you can store more decimals than you could with, for example, 32, meaning that the results of computations can be more precise. But for the topics discussed in this course, this is not very important. Other common data types that you might encounter are integers (int) such as 1, 3, 5, etc., or strings (str) such as 'hello', 'world', etc. Let's dig deeper into the dataset and see some summary statistics #### df.describe().T | | count | mean | std | min | 25% | 50% | |-------------------------------------|-----------|-----------|-----------|----------|----------|--------| | distance_from_home | 1000000.0 | 26.628792 | 65.390784 | 0.004874 | 3.878008 | 9.9677 | | $distance_from_last_transaction$ | 1000000.0 | 5.036519 | 25.843093 | 0.000118 | 0.296671 | 0.9986 | | ratio_to_median_purchase_price | 1000000.0 | 1.824182 | 2.799589 | 0.004399 | 0.475673 | 0.9977 | | repeat_retailer | 1000000.0 | 0.881536 | 0.323157 | 0.000000 | 1.000000 | 1.0000 | | used_chip | 1000000.0 | 0.350399 | 0.477095 | 0.000000 | 0.000000 | 0.0000 | | used_pin_number | 1000000.0 | 0.100608 | 0.300809 | 0.000000 | 0.000000 | 0.0000 | | online_order | 1000000.0 | 0.650552 | 0.476796 | 0.000000 | 0.000000 | 1.0000 | | fraud | 1000000.0 | 0.087403 | 0.282425 | 0.000000 | 0.000000 | 0.0000 | | | | | | | | | With the describe() method we can see the count, mean, standard deviation, minimum, 25th percentile, median, 75th percentile, and maximum values of each variable in the dataset. # Checking for Missing Values and Duplicated Rows It is also important to check for missing values and duplicated rows in the dataset. Missing values can be problematic for machine learning models, as they might not be able to handle them. Duplicated rows can also be problematic, as they might introduce bias in the model. We can check for missing values (NA) that are encoded as None or numpy.NaN (Not a Number) with the isna() method. This method returns a boolean DataFrame (i.e., a DataFrame with True and False values) with the same shape as the original DataFrame, where True values indicate missing values. #### df.isna() | | $distance_from_home$ | $distance_from_last_transaction$ | ratio_to_median_purchase_price | |---|------------------------|-------------------------------------|--------------------------------| | 0 | False | False | False | | 1 | False | False | False | | 2 | False | False | False | | 3 | False | False | False | | | $distance_from_home$ | $distance_from_last_transaction$ | $ratio_to_median_purchase_price$ | repeat_re | |--------|------------------------|-------------------------------------|--------------------------------------|-----------| | 4 | False | False | False | False | | | ••• | | | ••• | | 999995 | False | False | False | False | | 999996 | False | False | False | False | | 999997 | False | False | False | False | | 999998 | False | False | False | False | | 999999 | False | False | False | False | or to make it easier to see, we can sum the number of missing values for each variable #### df.isna().sum() ``` distance_from_home 0 distance_from_last_transaction 0 ratio_to_median_purchase_price 0 repeat_retailer 0 used_chip 0 used_pin_number 0 online_order 0 fraud 0 ``` dtype: int64 Luckily, there seem to be no missing values. However, you need to be careful! Sometimes missing values are encoded as empty strings '' or numpy.inf (infinity), which are not considered missing values by the isna() method. If you suspect that this might be the case, you need to make additional checks. As an alternative, we could also look at the info() method, which provides a summary of the DataFrame, including the number of non-null values in each column. If there are missing values, the number of non-null values will be less than the number of rows in the dataset. #### df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 8 columns): | # | Column | Non-Null Count | Dtype | |---|--------------------------------|------------------|---------| | | | | | | 0 | distance_from_home | 1000000 non-null | float64 | | 1 | distance_from_last_transaction | 1000000 non-null | float64 | | 2 | ratio_to_median_purchase_price | 1000000 non-null | float64 | | 3 | repeat_retailer | 1000000 non-null | float64 | | 4 | used_chip | 1000000 non-null | float64 | ``` 5 used_pin_number 1000000 non-null float64 6 online_order 1000000 non-null float64 7 fraud 1000000 non-null float64 ``` dtypes: float64(8) memory usage: 61.0 MB We can also check for duplicated rows with the duplicated() method. ``` df.loc[df.duplicated()] ``` ``` distance_from_home distance_from_last_transaction ratio_to_median_purchase_price repe ``` Luckily, there are also no duplicated rows. #### Data Visualization Let's continue with some data visualization. We can use the matplotlib library to create plots. We have already imported the library at the beginning of the notebook. Let's start by plotting the distribution of the target variable fraud which can only take values zero and one. We can type ``` df['fraud'].value_counts() ``` ``` fraud 0.0 912597 1.0 87403 Name: count, dtype: int64 ``` to get the count of each value. We can also use the normalize=True argument to get the fraction of observations instead of the count ``` df['fraud'].value_counts(normalize=True) ``` ``` fraud 0.0 0.912597 1.0 0.087403 Name: proportion, dtype: float64 ``` We can then plot it as follows ``` df['fraud'].value_counts(normalize=True).plot(kind='bar') plt.xlabel('Fraud') plt.ylabel('Fraction of Observations') plt.title('Distribution of Fraud') ax = plt.gca() ``` ``` ax.set_ylim([0.0, 1.0]) plt.show() ``` Alternatively, we can plot it as a pie chart ``` df.value_counts("fraud").plot.pie(autopct = "%.1f") plt.ylabel('') plt.show() ``` Our dataset seems to be quite imbalanced, as only 8.7% of the transactions are fraudulent. This is a common problem in fraud detection datasets, as fraudulent transactions are usually very rare. We will need to **keep this in mind** when evaluating our machine learning model: the accuracy measure will be very high even for bad models, as the model can just predict
that all transactions are not fraudulent and still get an accuracy of 91.3%. Let's look at some distributions. Most of the variables in the dataset are binary (0 or 1) variables. However, we also have some continuous variables. Let's plot the distribution of the variable ratio_to_median_purchase_price, which is a continuous variable. We can also plot the distribution of the variable ratio_to_median_purchase_price by the target variable fraud to see if there are any differences between fraudulent and non-fraudulent transactions There are indeed some differences between fraudulent and non-fraudulent transactions. For example, fraudulent transactions seem to have a higher ratio to the median purchase price, which is expected as fraudsters might try to make large transactions to maximize their profit. We can also look at the correlation between the variables in the dataset. The correlation is a measure of how two variables move together df.corr() # Pearson correlation (for linear relationships) | | $distance_from_home$ | $distance_from_last_transaction$ | ratio_ | |-------------------------------------|------------------------|-------------------------------------|---------| | distance_from_home | 1.000000 | 0.000193 | -0.0013 | | $distance_from_last_transaction$ | 0.000193 | 1.000000 | 0.0010 | | ratio_to_median_purchase_price | -0.001374 | 0.001013 | 1.00000 | | repeat_retailer | 0.143124 | -0.000928 | 0.0013' | | used_chip | -0.000697 | 0.002055 | 0.00058 | | used_pin_number | -0.001622 | -0.000899 | 0.00094 | | online_order | -0.001301 | 0.000141 | -0.0003 | | fraud | 0.187571 | 0.091917 | 0.46230 | | | | | | df.corr('spearman') # Spearman correlation (for monotonic relationships) | distance_from_home | $distance_from_last_transaction$ | ratio_to_median_ | |--------------------|---|---| | 1.000000 | -0.001068 | -0.000152 | | -0.001068 | 1.000000 | -0.000111 | | -0.000152 | -0.000111 | 1.000000 | | 0.559724 | -0.001352 | 0.001202 | | -0.000118 | -0.000165 | -0.000099 | | -0.000338 | 0.000555 | 0.000251 | | -0.001812 | -0.001076 | -0.000376 | | 0.095032 | 0.034661 | 0.342838 | | | 1.000000
-0.001068
-0.000152
0.559724
-0.000118
-0.000338
-0.001812 | $\begin{array}{cccc} -0.001068 & 1.000000 \\ -0.000152 & -0.000111 \\ 0.559724 & -0.001352 \\ -0.000118 & -0.000165 \\ -0.000338 & 0.000555 \\ -0.001812 & -0.001076 \end{array}$ | This is still a bit hard to read. We can visualize the correlation matrix with a heatmap using the Seaborn library, which we have already imported at the beginning of the notebook. Note how ratio_to_median_purchase_price is positively correlated with fraud, which is expected as we saw in the previous plot that fraudulent transactions have a higher ratio to the median purchase price. Furthermore, used_chip and used_pin_number are negatively correlated with fraud, which makes sense as transactions, where the chip or the pin is used, are supposed to be more secure. We can also plot boxplots to visualize the distribution of the variables ``` selector = ['distance_from_home', 'distance_from_last_transaction', 'ratio_to_median_purchase_price'] # Select the variables we want to plot plt.figure() ax = sns.boxplot(data = df[selector], orient = 'h') ax.set(xscale = "log") # Set the x-axis to a logarithmic scale to better visualize the data plt.show() ``` Boxplots are a good way to visualize the distribution of a variable, as they show the median, the interquartile range, and the outliers. Each of the distributions shown in the boxplots above has a long right tail, which explains the large number of outliers. However, you have to be careful: you cannot just remove these outliers since these are likely to be fraudulent transactions. Let's see how many fraudulent transactions we would remove if we blindly remove the outliers according to the interquartile range #### fraud 1.0 53092 0.0 31294 Name: count, dtype: int64 ``` df['fraud'].value_counts() ``` fraud 0.0 912597 1.0 87403 Name: count, dtype: int64 53092 of 87403 (more than half!) of our fraudulent transactions would be removed if we would have blindly removed the outliers according to the interquartile range. This is a significant number of observations, which would likely hurt the performance of our machine-learning model. Therefore, we should not remove these outliers. It would make the imbalance of our dataset even worse. # Splitting the Data into Training and Test Sets Before we can train a machine learning model, we need to split our dataset into a training set and a test set. ``` X = df.drop('fraud', axis=1) # All variables except `fraud` y = df['fraud'] # Only our fraud variables ``` The training set is used to train the model, while the test set is used to evaluate the model. We will use the train_test_split function from the sklearn.model_selection module to split our dataset. We will use 70% of the data for training and 30% for testing. We will also set the stratify argument to y to make sure that the distribution of the target variable is the same in the training and test sets. Otherwise, we might randomly not have any fraudulent transactions in the test set, which would make it impossible to correctly evaluate our model. ## **Scaling Features** To improve the performance of our machine learning model, we should scale the features. This is especially important for models that are sensitive to the scale of the features, such as logistic regression. We will use the StandardScaler class from the sklearn.preprocessing module to scale the features. The StandardScaler class scales the features so that they have a mean of 0 and a standard deviation of 1. Since we don't want to scale features that are binary (0 or 1), we will define a small function that scales only the features that we want ``` def scale_features(scaler, df, col_names, only_transform=False): # Extract the features we want to scale ``` ``` features = df[col_names] # Fit the scaler to the features and transform them if only_transform: features = scaler.transform(features.values) else: features = scaler.fit_transform(features.values) # Replace the original features with the scaled features df[col_names] = features ``` Then, we need to run the function ``` col_names = ['distance_from_home', 'distance_from_last_transaction', 'ratio_to_median_purchase_price'] scaler = StandardScaler() scale_features(scaler, X_train, col_names) scale_features(scaler, X_test, col_names, only_transform=True) ``` Note that we only fit the scaler to the training set and then transform both the training and test set. This ensures that the same values for the features produce the same output in the training and test set. Otherwise, if we fit the scaler to the test data as well, the meaning of certain values in the test set might change, which would make it impossible to evaluate the model correctly. #### i Mini-Exercise Try switching to MinMaxScaler instead of StandardScaler and see how it affects the performance of the model. MinMaxScaler scales the features so that they are between 0 and 1. # 2.5.2 Implementing Logistic Regression Now that we have explored and preprocessed our dataset, we can move on to the next step: training a machine learning model. We will use a logistic regression model to predict whether a transaction is fraudulent or not. Using the LogisticRegression class from the sklearn.linear_model module, fitting the model to the data is straightforward using the fit method ``` clf = LogisticRegression().fit(X_train, y_train) ``` We can then use the predict method to predict the class of the test set ``` clf.predict(X_test.head(5)) ``` ``` array([0., 0., 0., 0., 1.]) ``` The actual classes of the first five observations in the test dataset are ``` y_test.head(5) ``` ``` 217309 0.0 902387 0.0 175152 0.0 527113 0.0 973041 1.0 ``` Name: fraud, dtype: float64 This seems to match quite well. Let's have a look at different performance metrics ``` y_pred = clf.predict(X_test) y_proba = clf.predict_proba(X_test) print(f"Accuracy: {accuracy_score(y_test, y_pred)}") print(f"Precision: {precision_score(y_test, y_pred)}") print(f"Recall: {recall_score(y_test, y_pred)}") print(f"ROC AUC: {roc_auc_score(y_test, y_proba[:, 1])}") ``` Accuracy: 0.95908 Precision: 0.8954682094038908 Recall: 0.6021128103428549 ROC AUC: 0.9671832218100465 As expected, the accuracy is quite high since we do not have many fraudulent transactions. Recall that the precision (Precision = $\frac{TP}{TP+FP}$) is the fraction of correctly predicted fraudulent transactions among all transactions transactions predicted to be fraudulent. The recall (Recall = $\frac{TP}{TP+FN}$) is the fraction of correctly predicted fraudulent transactions among the actual fraudulent transactions. The ROC AUC is the area under the curve for the receiver operating characteristic (ROC) curve ``` # Compute the ROC curve y_proba = clf.predict_proba(X_test) fpr, tpr, thresholds = roc_curve(y_test, y_proba[:,1]) # Plot the ROC curve plt.plot(fpr, tpr) plt.plot([0, 1], [0, 1], linestyle='--', color='grey') plt.xlabel('False Positive Rate (FPR)') plt.ylabel('True Positive Rate (TPR)') ``` ``` plt.title('ROC Curve') plt.show() ``` The confusion matrix for the test set can be computed as follows ``` array([[15788, 1843], [10433, 271936]]) ``` We can also plot the confusion matrix as a heatmap As you can see, we have mostly true negatives and true positives. However, there is still a significant number of false negatives, which means that we are missing fraudulent transactions, and a significant number of false positives, which means that we are predicting transactions as fraudulent that are not fraudulent. If we would like to use a threshold other than 0.5 to predict the class of the
test set, we can do so as follows ``` # Alternative threshold threshold = 0.1 # Predict the class of the test set y_pred_alt = (y_proba[:, 1] >= threshold).astype(int) # Show the performance metrics print(f"Accuracy: {accuracy_score(y_test, y_pred_alt)}") print(f"Precision: {precision_score(y_test, y_pred_alt)}") print(f"Recall: {recall_score(y_test, y_pred_alt)}") ``` Accuracy: 0.9112033333333334 Precision: 0.49579121188932296 Recall: 0.9389420693337401 Setting a lower threshold increases the recall but decreases the precision. This is because we are more likely to predict a transaction as fraudulent, which increases the number of true positives but also the number of false positives. What the correct threshold is depends on the problem at hand. For example, if the cost of missing a fraudulent transaction is very high, you might want to set a lower threshold to increase the recall. If the cost of falsely predicting a transaction as fraudulent is very high, you might want to set a higher threshold to increase the precision. We can also plot the performance metrics for different thresholds ``` thresholds_array = np.linspace(0.0, 0.999, N) accuracy array = np.zeros(N) precision array = np.zeros(N) recall_array = np.zeros(N) # Compute the performance metrics for different thresholds for ii, thresh in enumerate(thresholds array): y_pred_alt_tmp = (y_proba[:, 1] > thresh).astype(int) accuracy_array[ii] = accuracy_score(y_test, y_pred_alt_tmp) precision_array[ii] = precision_score(y_test, y_pred_alt_tmp) recall_array[ii] = recall_score(y_test, y_pred_alt_tmp) # Plot the performance metrics plt.plot(thresholds_array, accuracy_array, label='Accuracy') plt.plot(thresholds_array, precision_array, label='Precision') plt.plot(thresholds_array, recall_array, label='Recall') plt.xlabel('Threshold') plt.ylabel('Score') plt.legend() plt.show() ``` # 2.5.3 Conclusions In this notebook, we have seen how to implement a logistic regression model in Python. We have loaded a dataset, explored and preprocessed it, and trained a logistic regression model to predict whether a transaction is fraudulent or not. We have evaluated the model using different performance metrics and have seen how the choice of threshold affects the performance of the model. There are many ways to improve the performance of the model. For example, we could try different machine learning models, or engineer new features. We could also try to deal with the imbalanced dataset by using techniques such as oversampling or undersampling. However, this is beyond the scope of this notebook. # Chapter 3 # **Decision Trees** Now that we have covered some of the basics of machine learning, we can start looking at some of the most popular machine learning algorithms. In this chapter, we will focus on **Decision Trees** and **tree-based ensemble methods** such as **Random Forests** and **(Gradient) Boosted Trees**. # 3.1 What is a Decision Tree? Decision trees, also called Classification and Regression Trees (CART) are a popular supervised learning method. As the name CART suggests, they are used for both classification and regression problems. They are simple to understand and interpret, and the process of building a decision tree is intuitive. Decision trees are also the foundation of more advanced ensemble methods like Random Forests and Boosting. Figure 3.1: Classification Tree - Classification of Dogs, Snakes, Fish, and Birds based on their Features Figure 3.1 shows an example of a decision tree for a classification problem, i.e., a classification tree. In this case, the decision tree is used to classify animals into four categories: dogs, snakes, fish, and birds. The tree asks a series of questions about the features of the animal (e.g., number of legs, feathers, and habitat) and uses the answers to classify the animal. This means that the tree partitions the feature space into different regions that are associated with a particular class label. Figure 3.2: Regression Tree - Prediction of y based on x_1 and x_2 Figure 3.2 shows an example of a decision tree for a regression problem, i.e., a regression tree. In this case, the decision tree is used to predict some continuous variable y (e.g., a house price) based on features x_1 and x_2 (e.g., number of rooms and size of the property). As Figure 3.7 shows, the regression tree partitions the (x_1, x_2) -space into different regions that are associated with a predicted value y. Mathematically, the prediction of a regression tree can be expressed as $$\hat{y} = \sum_{m=1}^{M} c_m \mathbb{1}(x \in R_m)$$ where R_m are the regions of the feature space, c_m are the predicted (i.e., average) values in the regions, $\mathbb{1}(x \in R_m)$ is an indicator function that is 1 if x is in region R_m and 0 otherwise, and M is the number of regions. # Mini-Exercise Given the decision tree in Figure 3.2, what would be the predicted value of y for the following data points? 1. $(x_1, x_2) = (1, 1)$ 2. $(x_1, x_2) = (2, 2)$ 3. $(x_1, x_2) = (2, 8)$ Figure 3.3: Regression Tree - Regions and Predictions of Decision Tree in Figure 3.2 - $\begin{array}{ll} 4. \ (x_1,x_2)=(10,4) \\ 5. \ (x_1,x_2)=(7,8) \end{array}$ #### 3.2 Terminology Figure 3.4: Decision Tree - Terminology Figure 3.4 shows some of the terminology that you might encounter in decision trees. The root node is the first node in the tree. The root node is split into decision nodes (or leaf nodes) based on the values of the features. The decision nodes are further split into decision nodes or leaf nodes. The leaf nodes represent the final prediction of the model. A subtree or branch is a part of the tree that starts at a decision node and ends at a leaf node. The **depth** of a tree is the length of the longest path from the root node to a leaf node. Furthermore, one can also differentiate between **child** and **parent nodes**. A child node is a node that results from a split (e.g., the first (reading from the top) decision node and leaf node in Figure 3.4 are child nodes of the root node). The parent node is the node that is split to create the child nodes (e.g., the root node in Figure 3.4 is the parent node of the first decision node and leaf node). # 3.3 How To Grow a Tree A key question is how to determine the order of variables and thresholds that are used in all the splits of a decision tree. There are different algorithms to grow a decision tree, but the most common one is the **CART algorithm**. The CART algorithm is a **greedy algorithm** that grows the tree in a **top-down** manner. The reason for this algorithm choice is that it is computationally infeasible to consider all possible (fully grown) trees to find the best-performing one. So, the CART algorithm grows the tree in a step-by-step manner choosing the splits in a greedy manner (i.e., choosing the one that performs best at that step). This means that the algorithm does not consider the future consequences of the current split and may not find the optimal tree. The basic idea is to find a split that minimizes some loss function Q^s and to repeat this recursively for all resulting child nodes. Suppose we start from zero, meaning that we first need to determine the root node. We compute the loss function Q^s for all possible splits s that we can make. This means we need to consider all variables in our dataset (and all split thresholds) and choose the one that minimizes the loss Q^s . We then repeat this process for each of the child nodes, and so on, until we reach a stopping criterion. Figure 3.5 shows an example of a candidate split. Figure 3.5: Example of Decision Tree Split Let τ denote the index of a leaf node with each leaf node τ corresponding to a region R_{τ} with N_{τ} data points. In the case of a classification problem, the loss function is typically either the Gini impurity $$Q_{\tau}^{s} = \sum_{k=1}^{K} p_{\tau k} (1 - p_{\tau k}) = 1 - \sum_{k=1}^{K} p_{\tau k}^{2}$$ or the **cross-entropy** $$Q_{\tau}^s = -\sum_{k=1}^K p_{\tau k} \log(p_{\tau k})$$ where $p_{\tau k}$ is the proportion of observations in region R_{τ} that belong to class k and K is the number of classes. Note that both measures become zero when all observations in the region belong to the same class (i.e., $p_{\tau k} = 1$ or $p_{\tau k} = 0$). This is the ideal case for a classification problem: we say that the node is **pure**. In the case of a regression problem, the loss function is typically the **mean** squared error (MSE) $$Q_{\tau}^s = \frac{1}{N_{\tau}} \sum_{i \in R_{\tau}} (y_i - \hat{y}_{\tau})^2$$ where \hat{y}_{τ} is the predicted value of the target variable y in region R_{τ} $$\hat{y}_{\tau} = \frac{1}{N_{\tau}} \sum_{i \in R_{\tau}} y_i,$$ i.e., the average of the target variable in region R_{τ} . The total loss of a split Q^s is then the weighted sum of the loss functions of the child nodes $$Q^s = \frac{N_1}{N_1 + N_2} Q_1^s + \frac{N_2}{N_1 + N_2} Q_2^s$$ where N_1 and N_2 are the number of data points in the child nodes. Once we have done this for the root node, we repeat the process for each child node. Then, we repeat it for the child nodes of the child nodes, and so on, until we reach a stopping criterion. The stopping criterion can be, for example, a maximum depth of the tree, a minimum number of data points in a leaf node, or a minimum reduction in the loss function. # 3.3.1 Example: Classification Problem Suppose you have the data in Table 3.1. The goal is to predict whether a bank will default based on two features: whether the bank is systemically important and its Common Equity Tier 1 (CET1) ratio (i.e., the ratio of CET1 capital to risk-weighted assets). The CET1 ratio is a measure of a bank's financial strength. Table 3.1: (Made-up) Data for Classification Problem (Bank Default Prediction) | Default | Systemically Important Bank | CET1 Ratio (in %) | |---------|-----------------------------|-------------------| | Yes | No | 8.6
| | No | No | 9 | | Yes | Yes | 10.6 | | Yes | Yes | 10.8 | | No | No | 11.2 | | No | No | 11.5 | | No | Yes | 12.4 | Given that you only have two features, CET1 Ratio and whether it is a systemically important bank, you only have two possible variables for the root node. However, since CET1 is a continuous variable, there are potentially many thresholds that you could use to split the data. To find this threshold, we need to calculate the **Gini impurity** of each possible split and choose the one that minimizes the impurity. Table 3.2: Gini Impurities for Different CET1 Thresholds | CET1 Ratio Threshold | Q | Q | Q | |----------------------|------|------|------| | 8.8 | 0 | 0.44 | 0.38 | | 9.8 | 0.5 | 0.48 | 0.49 | | 10.7 | 0.44 | 0.38 | 0.4 | | 11 | 0.38 | 0 | 0.21 | | 11.35 | 0.48 | 0 | 0.34 | | 11.95 | 0.5 | 0 | 0.43 | According to Table 3.2, the best split is at a CET1 ratio of 7.0%. The Gini impurity for CET1 $\leq 11\%$ is 0.38, the Gini impurity of CET1 > 11% is 0, and the total impurity is 0.21. However, we could also split based on whether a bank would be systemically important. In this case, the Gini impurity of the split is 0.40. This means that the best split is based on the CET1 ratio. We split the data into two regions: one with a CET1 ratio of 11.0% or less and one with a CET1 ratio of more than 11.0%. Note that the child node for a CET1 ratio of more than 11.0% is already pure, i.e., all banks in this region are not defaulting. However, the child node for a CET1 ratio of 11.0% or less is not pure meaning that we can do additional splits as shown in Figure 3.6. In particular, both, the split at a CET1 ratio of 8.8% and the split based on whether a bank is systemically important yield a Gini impurity of 0.25. We choose the split based on whether a bank is systemically important as the next split, which means we can do the final split based on the CET1 ratio. Figure 3.6: Classification Tree for Table 3.1 # 3.3.2 Stopping Criteria and Pruning a Tree A potential problem with decision trees is that they can **overfit** the training data. In principle, we can get the error down to zero if we just make enough splits. This means that the tree can become too complex and capture noise in the data rather than the underlying relationship. To prevent this, we usually set some early stopping criteria like - A maximum depth of the tree, - A minimum number of data points in a leaf node, - A minimum number of data points required in a decision node for a split, - A minimum reduction in the loss function, or - A maximum number of leaf nodes, which will prevent the tree from growing too large and all the nodes from becoming pure. We can also use a combination of these criteria. In the Python applications, we will see how to set some of these stopping criteria. Figure 3.7 shows an example of how stopping criteria affect the fit of a decision tree. Note that without any stopping criteria, the tree fits the data perfectly but is likely to overfit. By setting a maximum depth or a minimum number of data points in a leaf node, we can prevent the tree from overfitting the data. Another way to prevent overfitting is to **prune** the tree, i.e., to remove nodes Figure 3.7: Regression Tree - Effect of Stopping Criteria from the tree according to certain rules. This is done *after* (not during) growing the tree. One common approach is to use **cost-complexity pruning**. The idea is related to regularization that we have seen before, i.e., we add a term to the loss functions above that penalizes tree complexity. The pruning process is controlled by a hyperparameter λ that determines the trade-off between the complexity of the tree and its fit to the training data. # Mini-Exercise How would the decision tree in Figure 3.6 look like if - 1. we required a minimum of 2 data points in a leaf node? - 2. we required a maximum depth of 2? - 3. we required a maximum depth of 2 and a minimum of 3 data points in a leaf node? - 4. we required a minimum of 3 data points for a split? - 5. we required a minimum of 5 data points for a split? # 3.4 Advantages and Disadvantages As noted by Murphy (2022), decision trees are popular because of some of the **advantages** they offer • Easy to interpret - Can handle mixed discrete and continuous inputs - Insensitive to monotone transformations of the inputs - Automatic variable selection - Relatively robust to outliers - Fast to fit and scale well to large data sets - Can handle missing input features¹ ## Their disadvantages include - Not very accurate at prediction compared to other kinds of models (note, for example, the piece-wise constant nature of the predictions in regression problems) - They are **unstable**: small changes to the input data can have large effects on the structure of the tree (small changes at the top can affect the rest of the tree) # 3.5 Ensemble Methods Decision trees are powerful models, but they can be unstable. To address these issues, we can use **ensemble methods** that combine multiple decision trees to improve the performance of the model. The two most popular ensemble methods are **Random Forests** and **Boosting**. ## 3.5.1 Random Forests The idea of Random Forests is to build a large number of trees (also called weak learners in this context), each of which is trained on a random subset of the data. The predictions of the trees are then averaged in regression tasks or determined through majority voting in the case of classification tasks to make the final prediction. Training multiple trees on random subsets of the data is also called bagging (short for bootstrap aggregating). Random Forests adds an additional layer of randomness by selecting a random subset of features for each tree. This means that each tree is trained on a different subset of the data and a different subset of features. The basic steps of the Random Forest algorithm are as follows: - 1. **Bootstrapping**: Randomly draw N samples with replacement from the training data. - 2. **Grow a tree**: For each node of the tree, randomly select m features from the p features in the bootstrap dataset and find the best split based on these m features. - 3. Repeat: Repeat steps 1 and 2 B times to grow B trees. ¹Note to handle missing input data one can use "backup" variables that are correlated with the variable of interest and can be used to make a split whenever the data is missing. Such splits are called **surrogate splits**. In the case of categorical variables, one can also use a separate category for missing values. Figure 3.8: Random Forests - Ensemble of Decision Trees with Majority Decision "It's a dog!" 4. **Prediction**: To get the prediction for a new data point, average the predictions of all trees in the case of regression or use a majority vote in the case of classification. Note that because we draw samples with replacement, some samples will not be included in the bootstrap sample. These samples are called **out-of-bag (OOB) samples**. The OOB samples can be used to estimate the performance of the model without the need for cross-validation since it is "performed along the way" (Hastie, Tibshirani, and Friedman (2009)). The OOB error is almost identical to the error obtained through N-fold cross-validation. # 3.5.2 Boosting Another popular ensemble method is **Boosting**. The idea behind boosting is to train a sequence of weak learners (e.g., decision trees), each of which tries to correct the mistakes of the previous one. The predictions of the weak learners are then combined to make the final prediction. Note how this differs from Random Forests where the trees are trained independently of each other in parallel, while here we sequentially train the trees to fix the mistakes of the previous ones. The basic steps can be roughly summarized as follows: - 1. **Initialize the model**: Construct a base tree with just a root node. In the case of a regression problem, the prediction could be the mean of the target variable. In the case of a classification problem, the prediction could be the log odds of the target variable. - 2. **Train a weak learner**: Train a weak learner on the data. The weak learner tries to correct the mistakes of the previous model. - 3. **Update the model**: Update the model by adding the weak learner to the model. The added weak learner is weighted by a learning rate η . - 4. Repeat: Repeat steps 2 and 3 until we have grown B trees. XGBoost (eXtreme Gradient Boosting) is a popular implementation of the (gradient) boosting algorithm. It is known for its performance and is widely used in machine learning competitions. The algorithm is based on the idea of gradient boosting, which is a generalization of boosting. We will see how to implement XGBoost in Python but will not go into the details of the algorithm here. Other popular implementations of the boosting algorithm are AdaBoost and LightGBM. # **Interpreting Ensemble Methods** A downside of using ensemble methods is that you lose the interpretability of a single decision tree. However, there are ways to interpret ensemble methods. One way is to look at the feature importance. Feature importance tells you how much each feature contributes to the reduction in the loss function. The idea is that features that are used in splits that lead to a large reduction in the loss function are more important. Murphy (2022) shows that the feature importance of feature k is $$R_k(b) = \sum_{j=1}^{J-1} G_j \mathbb{I}(v_j = k)$$ where the sum is over all non-leaf (internal) nodes, G_i is the loss reduction (gain) at node j, and $v_j = k$ if node j uses feature k. Simply put, we sum up all gains of the splits that use feature k. Then, we average over all trees in our ensemble to get the feature importance of feature k $$R_k = \frac{1}{B} \sum_{b=1}^B R_k(b).$$ Note that the resulting R_k are sometimes normalized such that the maximum value is 100. This means that the most important feature has a feature importance of
100 and all other features are scaled accordingly. Note that feature importance can in principle also be computed for a single decision tree. # Warning Note that feature importance tends to favor continuous variables and variables with many categories (for an example see here). As an alternative, one can use permutation importance which is a model-agnostic way to compute the importance of different features. The idea is to shuffle the values of a feature in the test data set and see how much the model performance decreases. The more the performance decreases, the more important the feature is. #### Python Implementation 3.6 Let's have a look at how to implement a decision tree in Python. Again, we need to first import the required packages and load the data ``` import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.tree import DecisionTreeClassifier, plot_tree from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, accuracy_score, → roc auc score, recall score, precision score, roc curve from sklearn.inspection import permutation_importance pd.set_option('display.max_columns', 50) # Display up to 50 from io import BytesIO from urllib.request import urlopen from zipfile import ZipFile import os.path # Check if the file exists if not os.path.isfile('data/card_transdata.csv'): print('Downloading dataset...') # Define the dataset to be downloaded zipurl = 'https://www.kaggle.com/api/v1/datasets/download/dh → anushnarayananr/credit-card-fraud' # Download and unzip the dataset in the data folder with urlopen(zipurl) as zipresp: with ZipFile(BytesIO(zipresp.read())) as zfile: zfile.extractall('data') print('DONE!') else: print('Dataset already downloaded!') # Load the data df = pd.read_csv('data/card_transdata.csv') ``` # Dataset already downloaded! This is the dataset of credit card transactions from Kaggle.com which we have used before. Recall that the target variable y is fraud, which indicates whether the transaction is fraudulent or not. The other variables are the features \boldsymbol{x} of the transactions. # df.head(20) | | $distance_from_home$ | $distance_from_last_transaction$ | $ratio_to_median_purchase_price$ | repeat_retaile | |----|------------------------|-------------------------------------|--------------------------------------|----------------| | 0 | 57.877857 | 0.311140 | 1.945940 | 1.0 | | 1 | 10.829943 | 0.175592 | 1.294219 | 1.0 | | 2 | 5.091079 | 0.805153 | 0.427715 | 1.0 | | 3 | 2.247564 | 5.600044 | 0.362663 | 1.0 | | 4 | 44.190936 | 0.566486 | 2.222767 | 1.0 | | 5 | 5.586408 | 13.261073 | 0.064768 | 1.0 | | 6 | 3.724019 | 0.956838 | 0.278465 | 1.0 | | 7 | 4.848247 | 0.320735 | 1.273050 | 1.0 | | 8 | 0.876632 | 2.503609 | 1.516999 | 0.0 | | 9 | 8.839047 | 2.970512 | 2.361683 | 1.0 | | 10 | 14.263530 | 0.158758 | 1.136102 | 1.0 | | 11 | 13.592368 | 0.240540 | 1.370330 | 1.0 | | 12 | 765.282559 | 0.371562 | 0.551245 | 1.0 | | 13 | 2.131956 | 56.372401 | 6.358667 | 1.0 | | 14 | 13.955972 | 0.271522 | 2.798901 | 1.0 | | 15 | 179.665148 | 0.120920 | 0.535640 | 1.0 | | 16 | 114.519789 | 0.707003 | 0.516990 | 1.0 | | 17 | 3.589649 | 6.247458 | 1.846451 | 1.0 | | 18 | 11.085152 | 34.661351 | 2.530758 | 1.0 | | 19 | 6.194671 | 1.142014 | 0.307217 | 1.0 | | | | | | | # df.describe() | | $distance_from_home$ | $distance_from_last_transaction$ | $ratio_to_median_purchase_price$ | repeat_ret | |----------------------|------------------------|-------------------------------------|--------------------------------------|------------| | count | 1000000.000000 | 1000000.000000 | 1000000.000000 | 1000000.00 | | mean | 26.628792 | 5.036519 | 1.824182 | 0.881536 | | std | 65.390784 | 25.843093 | 2.799589 | 0.323157 | | \min | 0.004874 | 0.000118 | 0.004399 | 0.000000 | | 25% | 3.878008 | 0.296671 | 0.475673 | 1.000000 | | 50% | 9.967760 | 0.998650 | 0.997717 | 1.000000 | | 75% | 25.743985 | 3.355748 | 2.096370 | 1.000000 | | max | 10632.723672 | 11851.104565 | 267.802942 | 1.000000 | | | | | | | # df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 ``` Data columns (total 8 columns): Column Non-Null Count Dtype ----- ----- 0 distance_from_home 1000000 non-null float64 distance_from_last_transaction 1000000 non-null float64 1 2 ratio_to_median_purchase_price 1000000 non-null float64 3 repeat_retailer 1000000 non-null float64 1000000 non-null float64 4 used_chip 1000000 non-null float64 used_pin_number 6 online_order 1000000 non-null float64 7 fraud 1000000 non-null float64 dtypes: float64(8) memory usage: 61.0 MB ``` # 3.6.1 Data Preprocessing Since we have already explored the dataset in the previous notebook, we can skip that part and move directly to the data preprocessing. We will again split the data into training and test sets using the ${\tt train_test_split}$ function Then we can do the feature scaling to ensure our non-binary variables have mean zero and variance $\mathbf{1}$ ``` def scale_features(scaler, df, col_names, only_transform=False): # Extract the features we want to scale features = df[col_names] # Fit the scaler to the features and transform them if only_transform: features = scaler.transform(features.values) else: features = scaler.fit_transform(features.values) # Replace the original features with the scaled features df[col_names] = features col_names = ['distance_from_home', 'distance_from_last_transaction', 'ratio_to_median_purchase_price'] ``` ``` scaler = StandardScaler() scale_features(scaler, X_train, col_names) scale_features(scaler, X_test, col_names, only_transform=True) ``` # 3.6.2 Implementing a Decision Tree Classifier We can now implement a decision tree model using the <code>DecisionTreeClassifier</code> class from the <code>sklearn.tree</code> module. Fitting the model to the data is almost the same as when we used logistic regression ``` clf_dt = DecisionTreeClassifier(random_state=0).fit(X_train, y_train) ``` We can visualize the tree using the plot_tree function from the sklearn.tree module ``` plot_tree(clf_dt, filled=True, feature_names = X_train.columns.to_list()) plt.show() ``` The tree is quite large and it's difficult to see details. Let's only look at the first level of the tree Recall from the data exploration that ratio_to_median_purchase_price was highly correlated with fraud. The decision tree model seems to have picked up on this as well since the first split is based on this variable. Also, note that the order in which the variables are split can differ between different branches of the tree. We can also make predictions using the model and evaluate its performance using the same functions as before ``` y_pred_dt = clf_dt.predict(X_test) y_proba_dt = clf_dt.predict_proba(X_test) print(f"Accuracy: {accuracy_score(y_test, y_pred_dt)}") print(f"Precision: {precision_score(y_test, y_pred_dt)}") print(f"Recall: {recall_score(y_test, y_pred_dt)}") print(f"ROC AUC: {roc_auc_score(y_test, y_proba_dt[:, 1])}") ``` ## ROC AUC: 0.999939141362689 The decision tree performs substantially better than the logistic regression. The ROC AUC score is much closer to the maximum value of 1 and we have an almost perfect classifier ``` # Compute the ROC curve fpr, tpr, thresholds = roc_curve(y_test, y_proba_dt[:, 1]) # Plot the ROC curve plt.plot(fpr, tpr) plt.plot([0, 1], [0, 1], linestyle='--', color='grey') plt.xlabel('False Positive Rate (FPR)') plt.ylabel('True Positive Rate (TPR)') plt.title('ROC Curve') plt.show() ``` Let's also check the confusion matrix to see where we still make mistakes 50000 273777 No Fraud There are only 3 false negatives, i.e., fraudulent transactions that we did not detect. There are also 2 false positives, i.e., "false alarms", where non-fraudulent transactions were classified as fraudulent. The decision tree classifier is almost perfect which is a bit suspicious. We might have been lucky in the sense that the training and test sets were split in a way that the model performs very well. We should not expect this to be the case in general. It might be better to use cross-validation to get a more reliable estimate of the model's performance. Actual # 3.6.3 Implementing a Random Forest Classifier 3 Fraud We can also implement a random forest model using the RandomForestClassifier class from the sklearn.ensemble module. Fitting the model to the data is almost the same as when we used logistic regression and decision trees Note that it takes a bit longer to train the Random Forest since we have to train many trees (the default setting is 100). We can also make predictions using the model and evaluate its performance using the same functions as before ``` y_pred_rf = clf_rf.predict(X_test) y_proba_rf = clf_rf.predict_proba(X_test) print(f"Accuracy: {accuracy_score(y_test, y_pred_rf)}") print(f"Precision: {precision_score(y_test, y_pred_rf)}") print(f"Recall: {recall_score(y_test, y_pred_rf)}") print(f"ROC AUC: {roc_auc_score(y_test, y_proba_rf[:, 1])}") ``` Accuracy: 0.9999833333333333 Precision: 1.0 Recall: 0.9998093131459517 ROC AUC: 0.999999993035008 As expected, the Random Forest performs better than the Decision Tree in the metrics we have used. Now, let's also check the confusion matrix to see where we still make mistakes ``` conf_mat = confusion_matrix(y_test, y_pred_rf, labels=[1, O]).transpose() # Transpose the sklearn confusion matrix to match the convention in the lecture sns.heatmap(conf_mat, annot=True, cmap='Blues', fmt='g', xticklabels=['Fraud', 'No Fraud'], yticklabels=['Fraud', 'No Fraud']) plt.xlabel("Actual") plt.ylabel("Predicted") plt.show() ``` There are still some false negatives, but the number of false positives has decreased compared to the Decision Tree model. # 3.6.4 Implementing a XGBoost Classifier Let's also have a look at the
XGBoost classifier. We can implement the model using the XGBClassifier class from the xgboost package. Fitting the model to the data is almost the same as when we used logistic regression, decision trees, and random forests, even though it is not part of the sklearn package. This is because the xgboost package is designed to work well with the sklearn package. Let's fit the model to the data ``` clf_xgb = XGBClassifier(random_state = 0).fit(X_train, y_train) y_pred_xgb = clf_xgb.predict(X_test) y_proba_xgb = clf_xgb.predict_proba(X_test) print(f"Accuracy: {accuracy_score(y_test, y_pred_xgb)}") print(f"Precision: {precision_score(y_test, y_pred_xgb)}") print(f"Recall: {recall_score(y_test, y_pred_xgb)}") print(f"ROC AUC: {roc_auc_score(y_test, y_proba_xgb[:, 1])}") ``` Accuracy: 0.998336666666667 Precision: 0.9893835616438356 Recall: 0.9916097784218756 ROC AUC: 0.999973496046352 Let's also check the confusion matrix to see where we still make mistakes The XGBoost model seems to perform a bit worse than the Random Forest model. There are more false negatives and false positives. However, the model is still very good at detecting fraudulent transactions and has a high ROC AUC score. Adjusting the hyperparameters of the model might improve its performance. # 3.6.5 Feature Importance We can also look at the feature importance of each model. The feature importance is a measure of how much each feature contributes to the model's predictions. Let's start with the Decision Tree model This shows that the ratio_to_median_purchase_price is the most important feature for determining whether a transaction is fraudulent or not. Whether a transaction is online, is important as well. Let's also look at the feature importance of the Random Forest model ``` df_feature_importance_rf = df_feature_importance_rf.sort_values('Importance', ascending=False) # Plot the feature importance plt.barh(df_feature_importance_rf['Feature'], df_feature_importance_rf['Importance']) plt.xlabel('Importance') plt.ylabel('Feature') plt.title('Feature Importance - Random Forest') plt.show() ``` Somewhat surprisingly, XGBoost seems to have picked up on different features than the Decision Tree and Random Forest models. The most important feature is online_order, followed by ratio_to_median_purchase_price as you can see from the plot below ``` plt.ylabel('Feature') plt.title('Feature Importance - XGBoost') plt.show() ``` # 3.6.6 Permuation Importance We can also look at the permutation importance of each model. The permutation importance is a measure of how much each feature contributes to the model's predictions. The permutation importance is calculated by permuting the values of each feature and measuring how much the model's performance decreases. Let's start with the Decision Tree model ``` plt.ylabel('Feature') plt.title('Permutation Importance - Decision Tree') plt.show() ``` Let's also look at the permutation importance of the Random Forest model ``` # Calculate the permutation importance result_rf = permutation_importance(clf_rf, X_test, y_test, n_repeats=10, random_state=0) # Create a DataFrame with the permutation importance df_permutation_importance_rf = pd.DataFrame({'Feature': df_permutation_importance_rf = df_permutation_importance_rf.sort_values('Importance', ascending=False) # Plot the permutation importance plt.barh(df_permutation_importance_rf['Feature'], df_permutation_importance_rf['Importance']) plt.xlabel('Accuracy Decrease') plt.ylabel('Feature') plt.title('Permutation Importance - Random Forest') plt.show() ``` # Let's also look at the permutation importance of the XGBoost model ``` # Calculate the permutation importance result_xgb = permutation_importance(clf_xgb, X_test, y_test, ¬ n_repeats=10, random_state=0) random_state=10, random_st # Create a DataFrame with the permutation importance df_permutation_importance_xgb = pd.DataFrame({'Feature': df_permutation_importance_xgb = df_permutation_importance_xgb.sort_values('Importance', ⇔ ascending=False) # Plot the permutation importance plt.barh(df_permutation_importance_xgb['Feature'], df_permutation_importance_xgb['Importance']) plt.xlabel('Accuracy Decrease') plt.ylabel('Feature') plt.title('Permutation Importance - XGBoost') plt.show() ``` Here the results for the three models are quite similar. The most important feature is ratio_to_median_purchase_price, followed by online_order. # 3.6.7 Conclusions In this notebook, we have seen how to implement decision trees, random forests, and XGBoost classifiers in Python. We have also seen how to evaluate the performance of these models using metrics such as accuracy, precision, recall, and ROC AUC. We have seen that the Random Forest and XGBoost models perform better than the Decision Tree model. Furthermore, we looked at the feature and permutation importance of each model to see which features are most important for determining whether a transaction is fraudulent or not. # Chapter 4 # Neural Networks In this chapter, we have a look at neural networks which are a popular machine learning method. We will cover the basics of neural networks and how they can be trained. # 4.1 What is a Neural Network? Neural networks are at the core of many cutting-edge machine learning models. They can be used as both a **supervised and unsupervised learning method**. In this course, we will focus on their application in supervised learning where they are used for both **regression and classification** tasks. While they are conceptually not much more difficult to understand than decision trees, a neural network is **not as easy to interpret as a decision tree**. For this reason, they are often called black boxes, meaning that it is not so clear what is happening inside. Furthermore, neural networks tend to be more difficult to train and for tabular data, which is the type of structured data that you will typically encounter, gradient-boosted decision trees tend to perform better. Nevertheless, since neural networks are what enabled many of the recent advances in AI, they are an important topic to cover, even if it is only to better understand what has been driving recent innovations. It is common to represent neural networks as directed graphs. Figure 4.1 shows a single-layer feedforward neural network with N=2 inputs, M=3 neurons in the hidden layer, and a single output. The input layer is connected to the hidden layer, which is connected to the output layer. For simplicity, we will only consider neural networks that are feedforward (i.e. their graphs are acyclical), with dense layers (i.e. each layer is fully connected to the previous), and without connections that skip layers. As we will see later on, under certain (relatively weak) conditions Figure 4.1: A Single-Layer Feedforward Neural Network - Neural networks are **universal approximators** (can approximate any (Borel measurable) function) - Neural networks **break the curse of dimensionality** (can handle very high dimensional functions) This makes them interesting for a wide range of fields in economics, e.g., quantitative macroeconomics or econometrics. However, neural networks are not a magic bullet, and there are some downsides in terms of the large data requirements, interpretability and training difficulty. # 4.1.1 Origins of the Term "Neural Network" Figure 4.2: A biological neuron (Source: Wikipedia) The term "neural network" originates in attempts to find mathematical representations of information processing in biological systems (Bishop 2006). The biological interpretation **not very important for research** anymore and one should not get too hung up on it. However, the interpretation can be useful when starting to learn about neural networks. Figure 4.2 shows a biological neuron. Figure 4.3: Artificial Neuron #### 4.2 An Artificial Neuron Artificial neurons are the basic building blocks of neural networks. Figure 4.3 shows a single artificial neuron. The N inputs denoted $x=(x_1,x_2,\dots,x_N)'$ are linearly combined into z using weights w and bias b $$z = b + \sum_{i=1}^{N} w_i x_i = \sum_{i=0}^{N} w_i x_i$$ where we defined an additional input $x_0 = 1$ and $w_0 = b$. The linear combination z is transformed using an **activation function** $\phi(z)$. $$a = \phi(z) = \phi\left(\sum_{i=0}^{N} w_i x_i\right)$$ The activation function introduces non-linearity into the neural network and allows it to learn highly non-linear functions. The particular choice of activation function depends on the application. This should look familiar to you already. If we set $\phi(z) = z$, we get a linear regression model and if we set $\phi(z) = \frac{1}{1+e^{-z}}$, we get a logistic regression model. This is because the basic building block, the artificial neuron, is a generalized linear model. ### Activation Functions Common activation functions include - Sigmoid: $\phi(z) = \frac{1}{1+e^{-z}}$ Hyperbolic tangent: $\phi(z) = tanh(z)$ - Rectified linear unit (ReLU): $\phi(z) = \max(0, z)$ - Softplus: $\phi(z) = \log(1 + e^z)$ Figure 4.4: Activation Functions ReLU has become popular in deep neural networks in recent years because of its good performance in these applications. Since economic problems usually involve smooth functions, softplus can be a good alternative. # 4.2.2 A Special Case: Perceptron Perceptrons were developed in the 1950s and have only one artificial neuron. Perceptrons use a **step function** as an activation function $$\phi(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{otherwise} \end{cases}$$ Perceptrons can be used for basic classification. However, the step function is usually not used in neural networks because it is not differentiable at z=0 and zero everywhere else. This makes it unsuitable for the back-propagation algorithm, which is used for determining the network weights. ## Mini-Exercise What would the decision boundary of a perceptron look like if we have two inputs x_1 and x_2 and the weights $w_1 = 1$, $w_2 = 1$, and b = -1? # 4.3 Building a
Neural Network from Artificial Neurons We can build a neural network by stacking multiple artificial neurons. For this reason, it is sometimes also called a **multilayer perceptron** (MLP). A **single-layer neural network** is a linear combination of M artificial neurons a_i $$a_j = \phi(z_j) = \phi\left(b_j^1 + \sum_{i=1}^N w_{ji}^1 x_i\right)$$ with the output defined as $$g(x; w) = b^2 + \sum_{j=1}^{M} w_j^2 a_j$$ where N is the number of inputs, M is the number of neurons in the hidden layer, and w are the weights and biases of the network. The width of the neural network is M. Figure 4.5 shows a single-layer feedforward neural network with N=2 inputs, M=3 neurons in the hidden layer, and a single output. Note that the biases can be thought of as additional weights that are multiplied by a constant input of 1. Figure 4.5: A Single-Layer Feedforward Neural Network with Biases shown explicitly # 4.4 Relation to Linear Regression Note that if we use a linear activation function, e.g. $\phi(x) = x$, the neural network collapses to a linear regression $$y \cong g(x;w) = \tilde{w}_0 + \sum_{i=1}^N \tilde{w}_i x_i$$ with appropriately defined regression coefficients $\tilde{w}.$ Recall that in our description of Figure 2.1 we argued that a machine learning algorithm would automatically turn the slider to find the best fit. This is exactly what the training algorithm has to do to train a neural network. # 4.5 A Simple Example Suppose we want to approximate $f(x) = \exp(x) - x^3$ with 3 neurons. The approximation might be $$\hat{f}(x) = a_1 + a_2 - a_3$$ where $$a_1=\max(0,-3x-1.5)$$ $$a_2 = \max(0, x+1)$$ $$a_3 = \max(0, 3x - 3)$$ Our neural network in this case uses ReLU activation functions and has all weights equal to one in the output layer. Figure 4.6 shows the admittedly poor approximation of f(x) by $\hat{f}(x)$ using this neural network. Given the piecewise linear nature of the ReLU activation function, the approximation is not very good. However, with more neurons, we could get a better approximation. Figure 4.6: Approximation by a Neural Network The HTML version of these notes shows an interactive version of Figure 4.6 where you can adjust the weights of the neural network to approximate a simple dataset. As you can see there, it is quite tricky to find parameters that approximate the function well. This is where the training algorithm comes in. It will automatically adjust the weights to minimize a loss function. # i TensorFlow Playground If you want to play around with neural networks, you can use the Tensor-Flow Playground: https://playground.tensorflow.org. It is a web-based tool that allows you to experiment with neural networks and see how they learn. Figure 4.7 shows the interface of the TensorFlow Playground. Figure 4.7: Tesorflow Playground # 4.6 Deep Neural Networks Figure 4.8: Deep Neural Network **Deep neural networks** have more than one hidden layer. The number of hidden layers is also called the **depth** of the neural network. Deep neural networks can learn more complicated things. For simple function approximation, a single hidden layer is sufficient. Figure 4.8 shows a deep neural network with two hidden layers. The first hidden layer consists of M_1 artificial neurons with inputs x_1, x_2, \dots, x_N $$a_j^1 = \phi \left(b_j^1 + \sum_{i=1}^N w_{ji}^1 x_i \right)$$ The second hidden layer consists of M_2 artificial neurons with inputs $a_1^1, a_2^1, \dots, a_{M_1}^1$ $$a_k^2 = \phi \left(b_k^2 + \sum_{j=1}^{M_1} w_{kj}^2 a_j^1 \right)$$ After Q hidden layers, the output is defined as $$y\cong g(x;w)=b^{Q+1}+\sum_{j=1}^{M_Q}w_j^{Q+1}a_j^Q$$ Note that the activation functions do not need to be the same everywhere. In principle, we could vary the activation functions even within a layer. # 4.7 Universal Approximation and the Curse of Dimensionality Recall that we want to approximate an unknown function in supervised learning tasks $$y = f(x)$$ where $y=(y_1,y_2,\ldots,y_K)'$ and $x=(x_1,x_2,\ldots,x_N)'$ are vectors. The function f(x) could stand for many different functions in economics (e.g. a value function, a policy function, a conditional expectation, a classifier, ...). It turns out that neural networks are universal approximators and break the curse of dimensionality. The universal approximation theorem by Hornik, Stinchcombe, and White (1989) states: A neural network with at least one hidden layer can approximate any Borel measurable function mapping finite-dimensional spaces to any desired degree of accuracy. Breaking the curse of dimensionality (Barron, 1993) A one-layer NN achieves integrated square errors of order O(1/M), where M is the number of nodes. In comparison, for series approximations, the integrated square error is of order $O(1/(M^{2/N}))$ where N is the dimensions of the function to be approximated. # 4.8 Training a Neural Network: Determining Weights and Biases We have not yet discussed how to determine the weights and biases. The weights and biases w are selected to **minimize a loss function** ### 4.8. TRAINING A NEURAL NETWORK: DETERMINING WEIGHTS AND BIASES95 $$E(w; X, Y) = \frac{1}{N} \sum_{n=1}^{N} E_n(w; x_n, y_n)$$ where N refers to the number of input-output pairs that we use for training and $E_n(w; x_n, y_n)$ refers to the loss of an individual pair n. For notational simplicity, I will write E(w) and $E_n(w)$ in the following or in some cases even omit argument w. # 4.8.1 Choice of Loss Function The choice of loss function depends on the problem at hand. In regressions, one often uses a mean squared error (MSE) loss $$E_{n}(\boldsymbol{w};\boldsymbol{x}_{n},y_{n})=\frac{1}{2}\left\Vert g\left(\boldsymbol{x}_{n};\boldsymbol{w}\right)-y_{n}\right\Vert ^{2}$$ In classification problems, one often uses a **cross-entropy loss** $$E_n(w; x_n, y_n) = \sum_{k=1}^K y_{nk} \log(g_k(x_n; w))$$ where k refers to kth class (or kth element) in the output vector. # 4.8.2 Gradient Descent Figure 4.9: Gradient Descent The weights and biases are determined by minimizing the loss function using a **gradient descent algorithm**. The basic idea is to compute how the loss changes with the weights w and step into the direction that reduces the loss. Figure 4.9 shows a simple example of a loss function and the gradient descent algorithm. The basic steps of the algorithm are 1. Initialize weights (e.g. draw from Gaussian distribution) $$w^{(0)} \sim N(0, I)$$ 2. Compute the gradient of the loss function with respect to weights $$\nabla E(w^{(i)}) = \frac{1}{N} \sum_{n=1}^{N} \nabla E_n \left(w^{(i)} \right)$$ 3. Update weights (make a small step in the direction of the negative gradient) $$w^{(i+1)} = w^{(i)} - \eta \nabla E\left(w^{(i)}\right)$$ where $\eta > 0$ is the learning rate. 4. Repeat Steps 2 and 3 until a terminal condition (e.g. fixed number of iterations) is reached. If we use the batch gradient descent algorithm described above, we might get stuck in a local minimum. To avoid this, we can use • Stochastic gradient descent: Use only a single observation to compute the gradient and update the weights for each observation $$w^{(i+1)} = w^{(i)} - \eta \nabla E_n \left(w^{(i)} \right)$$ • Minibatch gradient descent: Use a small batch of observations (e.g. 32) to compute the gradient and update the weights for each minibatch These algorithms are less likely to get stuck in a shallow local minimum of the loss function because they are "noisier". Figure 4.10 shows a comparison of the different gradient descent algorithms. Minibatch gradient descent is probably the most commonly used and is also what we will be using in our implementation in Python. ## 4.8.3 Backpropagation Algorithm Computing the gradient seems to be a daunting task since a weight in the first layer in a deep neural network affects the loss function potentially through thousands of "paths". The **backpropagation algorithm** (Rumelhart et al., Figure 4.10: Comparison of Gradient Descent Types (blue: Full Batch, red: Minibatch, orange: Stochastic) Figure 4.11: Backpropagation Algorithm 1986) provides an efficient way to evaluate the gradient. The basic idea is to go backward through the network to evaluate the gradient as shown in Figure 4.11. If you are interested in the details, I recommend reading the notes by Nielsen (2019). # 4.9 Practical Considerations From a practical perspective, there are many more things to consider. Often times it's beneficial to do some (or all) of the following - Input/output normalization: (e.g. to have unit variance and mean zero) can improve the performance of the NN - Check for overfitting: by splitting the dataset into a training dataset and a test dataset - Regularization: to avoid overfitting (e.g. add a term to lose function that penalizes large weights) - Adjust the learning rate: η during training We have already discussed some of these topics in the context of other machine learning algorithms. # 4.10 Python Implementation Let's have a look at how to implement a neural network in Python. # 4.10.1 Implementing the Feedforward Part of a Neural Network As a small programming exercise and to improve our understanding of neural networks, let's implement the feedforward part of a neural network from scratch. We will have to calculate the output of the network for some given weights and biases, as well as some inputs. Let's start by importing the necessary libraries ``` import numpy as np ``` Next, we define the activation function for which we use the sigmoid function ``` def activation_function(x): return 1/(1+np.exp(-x)) # sigmoid function ``` Now, we define the feedforward function which calculates the output of the neural network given some inputs, weights, and biases. The function takes the inputs, weights, and biases as arguments and returns the output of the network ``` def feedforward(inputs, w1, w2, b1, b2): # Compute the pre-activation values for the first layer ``` ``` z = b1 + np.matmul(w1, inputs) # Compute the post-activation values for
the first layer a = activation_function(z) # Combine the post-activation values of the first layer to an output g = b2 + np.matmul(w2, a) return g ``` Mathematically, the function computes the following $$z = b^{1} + w^{1}x$$ $$a = \phi(z)$$ $$q = b^{2} + w^{2}a$$ and returns g at the end. We have written this using matrix notation to make it more compact. Remember that node j in the hidden layer is given by $$\begin{split} z_j &= b_j^1 + \sum_{i=1}^N w_{ji}^1 x_i \\ a_j &= \phi(z_j) \end{split}$$ and the output of the network is given by $$g(x;w) = b^2 + \textstyle\sum_{j=1}^M w_j^2 a_j.$$ Let's test the function with some example inputs, weights and biases ``` # Define the weights and biases w1 = np.array([[0.1, 0.2], [0.3, 0.4]]) # 2x2 matrix w2 = np.array([0.5, 0.6]) # 1-d vector b1 = np.array([0.1, 0.2]) # 1-d vector b2 = 0.3 # Define the inputs inputs = np.array([1, 2]) # 1-d vector # Compute the output of the network feedforward(inputs, w1, w2, b1, b2) ``` ### np.float64(1.0943291429384328) To operationalize this, we would also need to define a loss function and an optimization algorithm to update the weights and biases. However, this is beyond the scope of this course. # 4.10.2 Using Neural Networks in Sci-Kit Learn Sci-kit learn provides a simple interface to use neural networks. However, it is not as flexible as the more commonly used PyTorch or TensorFlow. We can reuse the **dataset of credit card transactions** from Kaggle.com to demonstrate how to use neural networks in scikit-learn. ``` import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.neural_network import MLPClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, accuracy_score, → roc auc score, recall score, precision score, roc curve pd.set_option('display.max_columns', 50) # Display up to 50 from io import BytesIO from urllib.request import urlopen from zipfile import ZipFile import os.path # Check if the file exists if not os.path.isfile('data/card_transdata.csv'): print('Downloading dataset...') # Define the dataset to be downloaded zipurl = 'https://www.kaggle.com/api/v1/datasets/download/dh → anushnarayananr/credit-card-fraud' # Download and unzip the dataset in the data folder with urlopen(zipurl) as zipresp: with ZipFile(BytesIO(zipresp.read())) as zfile: zfile.extractall('data') print('DONE!') else: print('Dataset already downloaded!') # Load the data df = pd.read_csv('data/card_transdata.csv') ``` ``` # Split the data into training and test sets X = df.drop('fraud', axis=1) # All variables except `fraud` y = df['fraud'] # Only our fraud variables X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size = 0.3, random_state = 42) # Scale the features def scale_features(scaler, df, col_names, only_transform=False): # Extract the features we want to scale features = df[col names] # Fit the scaler to the features and transform them if only_transform: features = scaler.transform(features.values) else: features = scaler.fit_transform(features.values) # Replace the original features with the scaled features df[col_names] = features col_names = ['distance_from_home', 'distance_from_last_transaction', 'ratio_to_median_purchase_price'] scaler = StandardScaler() scale_features(scaler, X_train, col_names) scale_features(scaler, X_test, col_names, only_transform=True) ``` ### Dataset already downloaded! Recall that the target variable y is fraud, which indicates whether the transaction is fraudulent or not. The other variables are the features x of the transactions. To use a neural network for a classification task, we can use the MLPClassifier class from scikit-learn. The following code snippet shows how to use a neural network with one hidden layer with 16 nodes ``` clf = MLPClassifier(hidden_layer_sizes=(16,), random_state=42, verbose=False).fit(X_train, y_train) ``` If you would like to use a neural network with multiple hidden layers, you can specify the number of nodes per hidden layer using the hidden_layer_sizes parameter. For example, the following code snippet shows how to use a neural network with two hidden layers, one with 5 nodes and the other with 4 nodes ``` clf = MLPClassifier(alpha=1e-5, hidden_layer_sizes=(5,4), activation='logistic', random_state=42).fit(X_train, y_train) ``` Note that the alpha parameter specifies the regularization strength, the activation parameter specifies the activation function (by default it uses relu) and the random_state parameter specifies the seed for the random number generator (useful for reproducible results). We can check the loss curve to see how the neural network loss declined during training ``` plt.plot(clf.loss_curve_) plt.title("Loss Curve", fontsize=14) plt.xlabel('Iterations') plt.ylabel('Cost') plt.show() ``` We can then use the same way to evaluate the neural network performance as we did for the other ML models ``` y_pred = clf.predict(X_test) y_proba = clf.predict_proba(X_test) ``` ``` print(f"Accuracy: {accuracy_score(y_test, y_pred)}") print(f"Precision: {precision_score(y_test, y_pred)}") print(f"Recall: {recall_score(y_test, y_pred)}") print(f"ROC AUC: {roc_auc_score(y_test, y_proba[:, 1])}") ``` Accuracy: 0.9955266666666667 Precision: 0.971747127308582 Recall: 0.9772319896266352 ROC AUC: 0.9996638991577014 The neural network performs substantially better than the logistic regression. As in the case of the tree-based methods, the ROC AUC score is much closer to the maximum value of 1 and we have an almost perfect classifier ``` # Compute the ROC curve fpr, tpr, thresholds = roc_curve(y_test, y_proba[:, 1]) # Plot the ROC curve plt.plot(fpr, tpr) plt.plot([0, 1], [0, 1], linestyle='--', color='grey') plt.xlabel('False Positive Rate (FPR)') plt.ylabel('True Positive Rate (TPR)') plt.title('ROC Curve') plt.show() ``` Let's also check the confusion matrix to see where we still make mistakes ``` conf_mat = confusion_matrix(y_test, y_pred, labels=[1, O]).transpose() # Transpose the sklearn confusion matrix to match the convention in the lecture sns.heatmap(conf_mat, annot=True, cmap='Blues', fmt='g', xticklabels=['Fraud', 'No Fraud'], yticklabels=['Fraud', 'No Fraud']) plt.xlabel("Actual") plt.ylabel("Predicted") plt.show() ``` There are around 270 false negatives, i.e., a fraudulent transaction that we did not detect. There are also around 980 false positives, i.e., "false alarms", where non-fraudulent transactions were classified as fraudulent. #### Using Neural Networks in PyTorch 4.10.3 While it is possible to use neural networks in scikit-learn, it is more common to use PyTorch or TensorFlow for neural networks. PyTorch is a popular deeplearning library that is widely used in academia and industry. In this section, we will show how to use PyTorch to build a simple neural network for the same credit card fraud detection task. ⚠ Feel Free to Skip This Section This section might be a bit more challenging than what we have looked at previously. If you think that you are not ready for this, feel free to skip this section. This is mainly meant to be a starting point for those who are interested in learning more about neural networks. For a more in-depth introduction to PyTorch, I recommend that you check out the official PyTorch tutorials. This section, in particular, builds on the Learning PyTorch with Examples tutorial. Let's start by importing the necessary libraries ``` import torch from torch.utils.data import DataLoader, TensorDataset ``` Then, let's prepare the data for PyTorch. We need to convert the data in our DataFrame to PyTorch tensors ``` X_train_tensor = torch.tensor(X_train.values, dtype=torch.float32) y_train_tensor = torch.tensor(y_train.values, dtype=torch.long) ``` Note that we also converted the input values to float32 for improved training speed and the target values to long which is a type of integer (remember our target y can only take values zero or one). Next, we need to create a DataLoader object to load the data in mini-batches during the training process ``` dataset = TensorDataset(X_train_tensor, y_train_tensor) dataloader = DataLoader(dataset, batch_size=200, shuffle=True) dataset_size = len(dataloader.dataset) ``` Next, we define the neural network model using the nn module from PyTorch ``` model = torch.nn.Sequential(torch.nn.Linear(7, 16), # 7 input features, 16 nodes in the hidden layer torch.nn.ReLU(), # ReLU activation function torch.nn.Linear(16, 2) # 16 nodes in the hidden layer, 2 output nodes (fraud or no fraud)) ``` We also need to define the loss function and the optimizer. We will use the cross-entropy loss function and the Adam optimizer ``` loss_fn = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-5) # Adam optimizer with learning rate of 0.001 and L2 regularization (analogous to alpha in scikit-learn) ``` We can now train the neural network using the following code snippet Epoch 9 loss: 0.024499 Epoch 19 loss: 0.008713 Epoch 29 loss: 0.016122 Epoch 39 loss: 0.007585 Epoch 49 loss: 0.005461 Epoch 59 loss: 0.020942 Epoch 69 loss: 0.016723 Epoch 79 loss: 0.007653 Note that here we are updating the model weights for each mini-batch in the dataset and go over the whole dataset 80 times (epochs). We print the loss every epoch to see how the loss decreases over time. The following snippet shows how to use full-batch gradient descent instead of mini-batch gradient descent ``` # Compute the gradient of the loss with respect to model parameters loss.backward() # Update the weights by taking a "step" in the direction that reduces the loss optimizer.step() # Print the loss every 100 epochs if epoch % 100 == 99: print(f"Epoch {epoch} loss: {loss.item():>7f}") ``` Epoch 99 loss: 0.009982 Epoch 199 loss: 0.009945 Epoch 299 loss: 0.009928 Epoch 399 loss: 0.009920 Epoch 499 loss: 0.009914 Epoch 599 loss:
0.009910 Epoch 699 loss: 0.009907 Epoch 799 loss: 0.009904 Epoch 899 loss: 0.009901 Epoch 999 loss: 0.009899 Epoch 1099 loss: 0.009897 Epoch 1199 loss: 0.009895 Epoch 1299 loss: 0.009893 Epoch 1399 loss: 0.009891 Epoch 1499 loss: 0.009890 Epoch 1599 loss: 0.009888 Epoch 1699 loss: 0.009886 Epoch 1799 loss: 0.009885 Epoch 1899 loss: 0.009883 Epoch 1999 loss: 0.009881 Note that in this version we are updating the model weights 2000 times (epochs) and printing the loss every 100 epochs. We can now evaluate the model on the test set ``` X_test_tensor = torch.tensor(X_test.values, dtype=torch.float32) y_pred = torch.argmax(model(X_test_tensor), dim=1).numpy() print(f"Accuracy: {accuracy_score(y_test, y_pred)}") print(f"Precision: {precision_score(y_test, y_pred)}") print(f"Recall: {recall_score(y_test, y_pred)}") ``` Accuracy: 0.99658333333333334 Precision: 0.9775587566338135 Recall: 0.9834865184394188 Note that for simplicity we are reusing the sci-kit learn metrics to evaluate the model. However, our neural network trained in PyTorch does not perform exactly the same as the neural network trained in scikit-learn. This is likely because of different hyperparameters or different initializations of the weights. In practice, it is common to experiment with different hyperparameters to find the best model or to use grid search and cross-validation to try many values and find the best-performing ones. #### 4.10.4 Conclusions In this chapter, we have learned about neural networks, which are the foundation of deep learning. We have seen how to implement parts of a simple neural network from scratch and how to use neural networks in scikit-learn and PyTorch. # Chapter 5 # Additional Methods In this chapter, we will introduce some additional methods that are commonly used in machine learning. These methods include the K-Nearest Neighbors (KNN) algorithm and the K-means clustering algorithm. ## 5.1 K-Nearest Neighbors The K-Nearest Neighbors (KNN) algorithm is a simple and intuitive method for classification and regression meaning that it belongs to the class of **supervised learning** methods. The KNN algorithm uses the K nearest neighbors of a data point to make a prediction. For example, in the case of a **regression** task, the prediction \hat{y} for a new data point x is $$\hat{y} = \frac{1}{K} \sum_{x_i \in N_k(x)} y_i$$ i.e., the average of the K nearest neighbors of x. In the case of a **classification** task, the prediction \hat{y} is the majority class of the K nearest neighbors of x. Figure 5.1 shows an example of the K-Nearest Neighbors algorithm applied to a dataset with two classes. The decision boundary is shown as a shaded area. ## 5.2 K-means Clustering K-means is a method that is used for finding clusters in a set of unlabeled data meaning that it is an **unsupervised learning** method. For the algorithm to work, one has to choose a fixed number of clusters K for which the algorithm will then try to find the cluster centers (i.e., the means) using an iterative procedure. Figure 5.1: K-Nearest Neighbors Classification with K=5 (Classification shown as Shaded Area) The **basic algorithm** proceeds as follows given a set of initial guesses for the K cluster centers: - 1. Assign each data point to the nearest cluster center - Recompute the cluster centers as the mean of the data points assigned to each cluster The algorithm iterates over these two steps until the cluster centers do not change or the change is below a certain threshold. As an **initial guess**, one can use, for example, K randomly chosen observations as cluster centers. We need some **measure of disimilarity** (or distance) to assign data points to the nearest cluster center. The most common choice is the Euclidean distance. The squared Euclidean distance between two points x and y in p-dimensional space is defined as $$d(x_i, x_j) = \sum_{n=1}^{p} (x_{in} - x_{jn})^2 = \|x_i - x_j\|^2$$ where x_{in} and x_{jn} are the *n*-th feature of the *i*-th and *j*-th observation in our dataset, respectively. The objective function of the K-means algorithm is to minimize the sum of squared distances between the data points and their respective cluster centers $$\min_{C,\{m_k\}_{k=1}^K} \sum_{k=1}^K \sum_{C(i)=k} \|x_i - m_k\|^2$$ where second sum sums up over all elements i in cluster k and μ_k is the cluster center of cluster k. The K-means algorithm is sensitive to the initial choice of cluster centers. To mitigate this, one can run the algorithm multiple times with different initial guesses and choose the solution with the smallest objective function value. The scale of the data can also have an impact on the clustering results. Therefore, it is often recommended to **standardize the data** before applying the K-means algorithm. Furthermore, the Euclidean distance is **not well suited for binary or categorical data**. Therefore, one should only use the K-means algorithm for continuous data. How to choose the number of clusters K? One can use the so-called **elbow** method to find a suitable number of clusters. The elbow method plots the sum of squared distances (i.e., the objective function of K-means) for different K. The idea is to choose the number of clusters at the "elbow" of the curve, i.e., the point where the curve starts to flatten out. Note that the curve starts to flatten out when adding more clusters does not significantly reduce the sum of squared distances anymore. This usually happens to be the case when the number of clusters exceeds the "true" number of clusters in the data. However, this is just a heuristic and it might not always be easy to identify the "elbow" in the curve. Figure 5.2: K-Means Clusters and Elbow Method Figure 5.2 shows an example of the K-means clustering algorithm applied to a dataset with 3 clusters. The left-hand side shows the clusters found by the K-means algorithm, while the right-hand side shows the elbow method to find the optimal number of clusters. The elbow method suggests that the optimal number of clusters is 3, which is the true number of clusters in the dataset. ## 5.3 Python Implementation Let's have a look at how to implement KNN and K-means in Python. Again, we need to first import the required packages and load the data ``` import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.cluster import KMeans from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, accuracy_score, → roc_auc_score, recall_score, precision_score, roc_curve pd.set_option('display.max_columns', 50) # Display up to 50 from io import BytesIO from urllib.request import urlopen from zipfile import ZipFile import os.path ``` ``` # Check if the file exists if not os.path.isfile('data/card_transdata.csv'): print('Downloading dataset...') # Define the dataset to be downloaded zipurl = 'https://www.kaggle.com/api/v1/datasets/download/dh anushnarayananr/credit-card-fraud' # Download and unzip the dataset in the data folder with urlopen(zipurl) as zipresp: with ZipFile(BytesIO(zipresp.read())) as zfile: zfile.extractall('data') print('DONE!') else: print('Dataset already downloaded!') # Load the data df = pd.read_csv('data/card_transdata.csv') ``` ## Dataset already downloaded! This is the dataset of credit card transactions from Kaggle.com which we have used before. Recall that the target variable y is fraud, which indicates whether the transaction is fraudulent or not. The other variables are the features x of the transactions. ## df.head(20) | | distance_from_home | distance_from_last_transaction | ratio_to_median_purchase_price | repeat_retaile | |----|--------------------|--------------------------------|--------------------------------|----------------| | 0 | 57.877857 | 0.311140 | 1.945940 | 1.0 | | 1 | 10.829943 | 0.175592 | 1.294219 | 1.0 | | 2 | 5.091079 | 0.805153 | 0.427715 | 1.0 | | 3 | 2.247564 | 5.600044 | 0.362663 | 1.0 | | 4 | 44.190936 | 0.566486 | 2.222767 | 1.0 | | 5 | 5.586408 | 13.261073 | 0.064768 | 1.0 | | 6 | 3.724019 | 0.956838 | 0.278465 | 1.0 | | 7 | 4.848247 | 0.320735 | 1.273050 | 1.0 | | 8 | 0.876632 | 2.503609 | 1.516999 | 0.0 | | 9 | 8.839047 | 2.970512 | 2.361683 | 1.0 | | 10 | 14.263530 | 0.158758 | 1.136102 | 1.0 | | | $distance_from_home$ | $distance_from_last_transaction$ | $ratio_to_median_purchase_price$ | re | |----|------------------------|-------------------------------------|--------------------------------------|----| | 11 | 13.592368 | 0.240540 | 1.370330 | 1. | | 12 | 765.282559 | 0.371562 | 0.551245 | 1. | | 13 | 2.131956 | 56.372401 | 6.358667 | 1. | | 14 | 13.955972 | 0.271522 | 2.798901 | 1. | | 15 | 179.665148 | 0.120920 | 0.535640 | 1. | | 16 | 114.519789 | 0.707003 | 0.516990 | 1. | | 17 | 3.589649 | 6.247458 | 1.846451 | 1. | | 18 | 11.085152 | 34.661351 | 2.530758 | 1. | | 19 | 6.194671 | 1.142014 | 0.307217 | 1. | ## df.describe() | | distance_from_home | distance_from_last_transaction | ratio_to_median_purchase_price | |----------------------|--------------------|--------------------------------|--------------------------------| | count | 1000000.000000 | 1000000.000000 | 1000000.000000 | | mean | 26.628792 | 5.036519 | 1.824182 | | std | 65.390784 | 25.843093 | 2.799589 | | \min | 0.004874 | 0.000118 | 0.004399 | | 25% | 3.878008 | 0.296671 | 0.475673 | | 50% | 9.967760 | 0.998650 | 0.997717 | | 75% | 25.743985 | 3.355748 | 2.096370 | | max | 10632.723672 | 11851.104565 | 267.802942 | ## df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 8 columns): | # | Column | Non-Null Count | Dtype | |---|--------------------------------|------------------|---------| | | | | | | 0 | distance_from_home | 1000000 non-null | float64 | | 1 | distance_from_last_transaction | 1000000 non-null | float64 |
 2 | ratio_to_median_purchase_price | 1000000 non-null | float64 | | 3 | repeat_retailer | 1000000 non-null | float64 | | 4 | used_chip | 1000000 non-null | float64 | | 5 | used_pin_number | 1000000 non-null | float64 | | 6 | online_order | 1000000 non-null | float64 | | 7 | fraud | 1000000 non-null | float64 | dtypes: float64(8) memory usage: 61.0 MB ## 5.3.1 Data Preprocessing Since we have already explored the dataset in the previous notebook, we can skip that part and move directly to the data preprocessing. We will again split the data into training and test sets using the train_test_split function ``` X = df.drop('fraud', axis=1) # All variables except `fraud` y = df['fraud'] # Only our fraud variables X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size = 0.3, random_state = 42) ``` Then we can do the feature scaling to ensure our non-binary variables have mean zero and variance 1 ``` def scale_features(scaler, df, col_names, only_transform=False): # Extract the features we want to scale features = df[col_names] # Fit the scaler to the features and transform them if only_transform: features = scaler.transform(features.values) else: features = scaler.fit_transform(features.values) # Replace the original features with the scaled features df[col_names] = features # Define which features to scale with the StandardScaler and → MinMaxScaler for_standard_scaler = ['distance_from_home', 'distance_from_last_transaction', 'ratio_to_median_purchase_price',] # Apply the standard scaler (Note: we use the same mean and std for scaling the test set) standard_scaler = StandardScaler() scale_features(standard_scaler, X_train, for_standard_scaler) scale_features(standard_scaler, X_test, for_standard_scaler, → only transform=True) ``` ## 5.3.2 K-Nearest Neighbors (KNN) We can now implement the KNN algorithm using the KNeighborsClassifier class from the sklearn.neighbors module. We will use the default value of k=5 for the number of neighbors. ``` clf_knn = KNeighborsClassifier().fit(X_train, y_train) ``` We can now use the trained model to make predictions on the test set and evaluate the model performance using the confusion matrix and accuracy score. ``` y_pred_knn = clf_knn.predict(X_test) y_proba_knn = clf_knn.predict_proba(X_test) print(f"Accuracy: {accuracy_score(y_test, y_pred_knn)}") print(f"Precision: {precision_score(y_test, y_pred_knn)}") print(f"Recall: {recall_score(y_test, y_pred_knn)}") print(f"ROC AUC: {roc_auc_score(y_test, y_proba_knn[:, 1])}") ``` Accuracy: 0.9987 Precision: 0.9935419771485345 Recall: 0.991571641051066 ROC AUC: 0.9997341251520317 This seems to work quite well with a ROC AUC of 0.9997. We seem to have an almost perfect classifier. We can also plot the ROC curve to visualize the performance of the classifier ``` # Compute the ROC curve fpr, tpr, thresholds = roc_curve(y_test, y_proba_knn[:, 1]) # Plot the ROC curve plt.plot(fpr, tpr) plt.plot([0, 1], [0, 1], linestyle='--', color='grey') plt.xlabel('False Positive Rate (FPR)') plt.ylabel('True Positive Rate (TPR)') plt.title('ROC Curve') plt.show() ``` Let's also check the confusion matrix to see where we still make mistakes ``` conf_mat = confusion_matrix(y_test, y_pred_knn, labels=[1, O]).transpose() # Transpose the sklearn confusion matrix to match the convention in the lecture sns.heatmap(conf_mat, annot=True, cmap='Blues', fmt='g', xticklabels=['Fraud', 'No Fraud'], yticklabels=['Fraud', 'No Fraud']) plt.xlabel("Actual") plt.ylabel("Predicted") plt.show() ``` ## **5.3.3** K-Means This is the first example of an unsupervised learning algorithm meaning that we will ignore the labels in the training set. We will use the KMeans class from the sklearn.cluster module to implement the K-means algorithm. Note that we can not use categorical variables in the K-means algorithm, so we will only use the continuous variables in this example. Furthermore, to simplify interpretability we will only use two variables ``` continuous_variables = ['distance_from_home', 'distance_from_last_transaction', 'ratio_to_median_purchase_price'] n_clusters=2 kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10).fit(X_train[continuous_variables]) ``` We can check the cluster centers using the ${\tt cluster_centers_}$ attribute of the trained model ``` kmeans.cluster_centers_ array([[-2.01860525e-05, -1.55050548e-03, -1.68843633e-01], [3.66287246e-04, 2.81347918e-02, 3.06376244e+00]]) ``` Since we only have two variables we can easily visualize the clusters using a scatter plot. We first need to unscale the data to make the plot more interpretable Then, we can create the scatter plot to see what the clusters look like Note that the centers might look a bit off because we are using log scales on the ${\bf x}$ and y-axis. In the other dimension, we don't have such a nice separation of the clusters But what do these two clusters represent? We can check the mean of the target variable fraud for each cluster to get an idea of what the clusters represent ``` X_train_unscaled['cluster'] = kmeans.labels_ X_train_unscaled.query('cluster == 1').describe().T ``` | | count | mean | std | min | 25% | 50% | 75% | |-------------------------------------|---------|-----------|-----------|----------|----------|-----------|----------| | distance_from_home | 36679.0 | 26.727628 | 63.910540 | 0.032026 | 3.895800 | 10.098703 | 25.76034 | | $distance_from_last_transaction$ | 36679.0 | 5.780037 | 71.723799 | 0.000966 | 0.296198 | 1.000376 | 3.357238 | | ratio_to_median_purchase_price | 36679.0 | 10.470287 | 6.811775 | 2.209891 | 6.871869 | 8.384989 | 11.46617 | | repeat_retailer | 36679.0 | 0.879522 | 0.325524 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | | used_chip | 36679.0 | 0.351754 | 0.477524 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | | used_pin_number | 36679.0 | 0.102756 | 0.303645 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | | online_order | 36679.0 | 0.649063 | 0.477270 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | | cluster | 36679.0 | 1.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | | | | | | | | | | X_train_unscaled.query('cluster == 0').describe().T | | count | mean | std | min | 25% | 50% | |-------------------------------------|----------|-----------|-----------|----------|----------|---------| | distance_from_home | 663321.0 | 26.694233 | 66.097113 | 0.004874 | 3.880252 | 9.96929 | | $distance_from_last_transaction$ | 663321.0 | 4.988030 | 22.054240 | 0.000118 | 0.296681 | 0.99805 | | ratio_to_median_purchase_price | 663321.0 | 1.347721 | 1.226094 | 0.004399 | 0.455014 | 0.92907 | | repeat_retailer | 663321.0 | 0.881468 | 0.323238 | 0.000000 | 1.000000 | 1.00000 | | used_chip | 663321.0 | 0.350518 | 0.477133 | 0.000000 | 0.000000 | 0.00000 | | used_pin_number | 663321.0 | 0.100512 | 0.300682 | 0.000000 | 0.000000 | 0.00000 | | online_order | 663321.0 | 0.650643 | 0.476767 | 0.000000 | 0.000000 | 1.00000 | | cluster | 663321.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | | | | | | | | | ``` y_train[X_train_unscaled['cluster'] == 0].mean() 0.057474435454327545 y_train[X_train_unscaled['cluster'] == 1].mean() ``` #### 0.6286430927778838 There does not seem to be a clear difference between the two clusters except for the difference in the mean of the ratio_to_median_purchase_price variable. This is not necessarily very surprising since we only used three variables in the clustering algorithm. However, due to the correlation of ratio_to_median_purchase_price we have more fraudulent transactions in one cluster than the other. To be able to carry out a more meaningful clustering analysis using K-means we would need a different dataset with more quantitative variables. Nevertheless, let's also check the elbow method to how many clusters it would suggest ``` interias = [KMeans(n_clusters=n, n_init=10).fit(X_train).inertia_ for n in range(1, 11)] _, ax = plt.subplots() ax.plot(range(1, 11), interias, marker='o') ax.set(xlabel='Number of clusters', ylabel='Objective Function') plt.title('Elbow Method') plt.show() ``` There does not seem to be a clear elbow in the plot. Finally, we can also make predictions on the test set using the trained K-means model kmeans.predict(X_test[continuous_variables]) This assigns each observation in the test set to one of the two clusters. ## 5.3.4 Conclusions We have seen how to implement a KNN algorithm for classification and a K-means algorithm for clustering in Python using the sklearn package. We have also seen how to evaluate the performance of the KNN algorithm using the confusion matrix, accuracy score, precision, recall, and ROC AUC. We have also seen how to visualize the clusters created by the K-means algorithm and tried to apply the ellow method. # ${\bf Part~II} \\ {\bf Applications}$ # Chapter 6 # Loan Default Prediction The following application is inspired by the empirical example in "Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction" by Alonso Robisco and Carbó Martínez (2022). However, since we are not interested in model risk-adjusted performance, the application will purely focus on the implementation of machine learning algorithms for loan default prediction. ## 6.1 Problem Setup The dataset that we will be using was used in the Kaggle competition "Give Me Some Credit". The description of the competition reads as follows: Banks play a crucial role in market economies. They decide who can get finance and on what terms and can make or break investment decisions. For markets and society to function, individuals and companies need access to credit. Credit scoring algorithms, which make a guess at the probability of default, are the method banks use to determine whether or not a loan should be granted. This competition requires participants to improve on the state of the art in credit scoring, by predicting the probability that somebody will experience financial distress in the next two years. The goal of
this competition is to build a model that borrowers can use to help make the best financial decisions. Historical data are provided on 250,000 borrowers and the prize pool is \$5,000 (\$3,000 for first, \$1,500 for second and \$500 for third). Unfortunately, there won't be any prize money today. However, the experience that you can gain from working through an application like this can be invaluable. So, in a way, you are still winning! ## 6.2 Dataset Let's download the dataset automatically, unzip it, and place it in a folder called data if you haven't done so already ``` from io import BytesIO from urllib.request import urlopen from zipfile import ZipFile import os.path # Check if the file exists if not os.path.isfile('data/Data Dictionary.xl') or not os.path.isfile('data/cs-training.csv'): print('Downloading dataset...') # Define the dataset to be downloaded zipurl = 'https://www.kaggle.com/api/v1/datasets/download/br ycecf/give-me-some-credit-dataset' # Download and unzip the dataset in the data folder with urlopen(zipurl) as zipresp: with ZipFile(BytesIO(zipresp.read())) as zfile: zfile.extractall('data') print('DONE!') else: print('Dataset already downloaded!') ``` # Downloading dataset... DONE! Then, we can have a look at the data dictionary that is provided with the dataset. This will give us an idea of the variables that are available in the dataset and what they represent ``` import pandas as pd data_dict = pd.read_excel('data/Data Dictionary.xls', header=1) data_dict.style.hide() ``` | Variable Name | Description | |--|--| | SeriousDlqin2yrs | Person experienced 90 days past due delinquency or worse | | RevolvingUtilizationOfUnsecuredLines | Total balance on credit cards and personal lines of credit except real | | age | Age of borrower in years | | NumberOfTime30-59DaysPastDueNotWorse | Number of times borrower has been 30-59 days past due but no wors | | DebtRatio | Monthly debt payments, alimony, living costs divided by monthy gros | | MonthlyIncome | Monthly income | | NumberOfOpenCreditLinesAndLoans | Number of Open loans (installment like car loan or mortgage) and L | | NumberOfTimes90DaysLate | Number of times borrower has been 90 days or more past due. | | NumberRealEstateLoansOrLines | Number of mortgage and real estate loans including home equity line | | Number Of Time 60-89 Days Past Due Not Worse | Number of times borrower has been 60-89 days past due but no wors | | NumberOfDependents | Number of dependents in family excluding themselves (spouse, child | The variable y that we want to predict is SeriousDlqin2yrs which indicates whether a person has been 90 days past due on a loan payment (serious delinquency) in the past two years. This target variable is 1 if the loan defaults (i.e., serious delinquency occured) and 0 if the loan does not default (i.e., no serious delinquency occured) . The other variables are features that we can use to predict this target variable such as the age of the borrower and the monthly income of the borrower. # 6.3 Putting the Problem into the Context of the Course Given the description of the competition and the dataset, we can see that this is a **supervised learning problem**. We have a target variable that we want to predict, and we have features that we can use to predict this target variable. The target variable is binary, i.e., it can take two values: 0 or 1. The value 0 indicates that the loan will not default, while the value 1 indicates that the loan will default. Thus, this is a **binary classification problem**. ## 6.4 Setting up the Environment We will start by setting up the environment by importing the necessary libraries ``` import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ``` and loading the dataset ``` df = pd.read_csv('data/cs-training.csv') ``` Let's also download some precomputed models that we will use later on ``` for file_name in ['clf_nn.joblib', 'clf_nn2.joblib']: if not os.path.isfile(file_name): print(f'Downloading {file_name}...') # Generate the download link url = f'https://github.com/jmarbet/data-science-course/r aw/main/notebooks/{file_name}' # Download the file with urlopen(url) as response, open(file_name, 'wb') as out_file: data = response.read() out_file.write(data) print('DONE!') else: print(f'{file_name} already downloaded!') ``` clf_nn.joblib already downloaded! clf_nn2.joblib already downloaded! ## 6.5 Data Preprocessing The dataset is now loaded into a pandas DataFrame. Let's have a look at the first few rows of the dataset to get an idea of what the data looks like. df.head() | | Unnamed: 0 | SeriousDlqin2yrs | Revolving Utilization Of Unsecured Lines | age | NumberOfTime30 | |---|------------|------------------|--|-----|----------------| | 0 | 1 | 1 | 0.766127 | 45 | 2 | | 1 | 2 | 0 | 0.957151 | 40 | 0 | | 2 | 3 | 0 | 0.658180 | 38 | 1 | | 3 | 4 | 0 | 0.233810 | 30 | 0 | | 4 | 5 | 0 | 0.907239 | 49 | 1 | The column Unnamed: O seems to be a superfluous index column that we could drop. Let's do that ``` df = df.drop('Unnamed: 0', axis=1) ``` Furthermore, the order of the column names in the dataset is not very intuitive. Let's reorder the columns in the dataset ``` orderedList = ['SeriousDlqin2yrs', 'age', 'NumberOfDependents', 'MonthlyIncome', 'DebtRatio', 'RevolvingUtilizationOfUnsecuredLines', 'NumberOfOpenCreditLinesAndLoans', 'NumberRealEstateLoansOrLines', 'NumberOfTime30-59DaysPastDueNotWorse', 'NumberOfTime60-89DaysPastDueNotWorse', 'NumberOfTimes90DaysLate'] df = df.loc[:, orderedList] ``` Let's also have a look at the data types of the columns in the dataset and whether there are any missing values ``` df.info() ``` <class 'pandas.core.frame.DataFrame'> RangeIndex: 150000 entries, 0 to 149999 Data columns (total 11 columns): | # | Column | Non-Null Count | Dtype | | | | | |------|--------------------------------------|-----------------|---------|--|--|--|--| | | | | | | | | | | 0 | SeriousDlqin2yrs | 150000 non-null | int64 | | | | | | 1 | age | 150000 non-null | int64 | | | | | | 2 | NumberOfDependents | 146076 non-null | float64 | | | | | | 3 | MonthlyIncome | 120269 non-null | float64 | | | | | | 4 | DebtRatio | 150000 non-null | float64 | | | | | | 5 | RevolvingUtilizationOfUnsecuredLines | 150000 non-null | float64 | | | | | | 6 | NumberOfOpenCreditLinesAndLoans | 150000 non-null | int64 | | | | | | 7 | NumberRealEstateLoansOrLines | 150000 non-null | int64 | | | | | | 8 | NumberOfTime30-59DaysPastDueNotWorse | 150000 non-null | int64 | | | | | | 9 | NumberOfTime60-89DaysPastDueNotWorse | 150000 non-null | int64 | | | | | | 10 | NumberOfTimes90DaysLate | 150000 non-null | int64 | | | | | | dtyp | dtypes: float64(4), int64(7) | | | | | | | | memo | nemory usage: 12.6 MB | | | | | | | Note that the column MonthlyIncome and NumberOfDependents seem to have missing values. Before we drop these missing values or impute them, let's have a look at the distribution of our target variable SeriousDlqin2yrs ## df['SeriousDlqin2yrs'].value_counts(normalize=True) #### SeriousDlqin2yrs 0 0.93316 1 0.06684 Name: proportion, dtype: float64 As with the example that we have seen during one of our previous lectures, the dataset seems to be quite imbalanced. Only about 6.7% of the loans have defaulted. This is something that we need to keep in mind when treating the missing values and when building our models. Let's see what happens to the distribution of the target variable if we drop the missing values #### df.dropna().value_counts("SeriousDlqin2yrs", normalize=True) ## SeriousDlqin2yrs 0 0.930514 1 0.069486 Name: proportion, dtype: float64 It seems to have almost no impact on the distribution of the target variable. This is good news. Let's compare some other statistics of the dataset before and after dropping the missing values #### df.describe().T | | count | mean | std | min | 25% | |---|----------|-------------|--------------|-----|---------| | SeriousDlqin2yrs | 150000.0 | 0.066840 | 0.249746 | 0.0 | 0.00000 | | age | 150000.0 | 52.295207 | 14.771866 | 0.0 | 41.0000 | | NumberOfDependents | 146076.0 | 0.757222 | 1.115086 | 0.0 | 0.00000 | | MonthlyIncome | 120269.0 | 6670.221237 | 14384.674215 | 0.0 | 3400.00 | | DebtRatio | 150000.0 | 353.005076 | 2037.818523 | 0.0 | 0.17507 | | Revolving Utilization Of Unsecured Lines | 150000.0 | 6.048438 | 249.755371 | 0.0 | 0.02986 | | ${\bf Number Of Open Credit Lines And Loans}$ | 150000.0 | 8.452760 | 5.145951 | 0.0 | 5.00000 | | ${\bf Number Real Estate Loans Or Lines}$ | 150000.0 | 1.018240 | 1.129771 | 0.0 | 0.00000 | | Number Of Time 30-59 Days Past Due Not Worse | 150000.0 | 0.421033 | 4.192781 | 0.0 | 0.00000 | | Number Of Time 60-89 Days Past Due Not Worse | 150000.0 | 0.240387 | 4.155179 | 0.0 | 0.00000 | | ${\bf Number Of Times 90 Days Late}$ | 150000.0 | 0.265973 | 4.169304 | 0.0 | 0.00000 | ## df.dropna().describe().T | | count | mean | std | min | 25% | 50% | |--|----------|-------------|--------------|-----|-------------|-------| | SeriousDlqin2yrs | 120269.0 | 0.069486 | 0.254280 | 0.0 | 0.000000 | 0.000 | | age | 120269.0 | 51.289792 | 14.426684 | 0.0 | 40.000000 | 51.00 | | NumberOfDependents | 120269.0 | 0.851832 | 1.148391 | 0.0 | 0.000000 | 0.000 | | MonthlyIncome | 120269.0 | 6670.221237 | 14384.674215 | 0.0 | 3400.000000 | 5400. | | DebtRatio | 120269.0 | 26.598777 | 424.446457 | 0.0 | 0.143388 | 0.296 | | Revolving Utilization Of Unsecured Lines | 120269.0 | 5.899873 | 257.040685 | 0.0 | 0.035084 | 0.177 | | Number Of Open Credit Lines And Loans | 120269.0 | 8.758475 | 5.172835 | 0.0 | 5.000000 | 8.000 | | NumberRealEstateLoansOrLines | 120269.0 | 1.054519 | 1.149273 | 0.0 | 0.000000 | 1.000 | | Number Of Time 30-59 Days Past Due Not Worse | 120269.0 | 0.381769 |
3.499234 | 0.0 | 0.000000 | 0.000 | | Number Of Time 60-89 Days Past Due Not Worse | 120269.0 | 0.187829 | 3.447901 | 0.0 | 0.000000 | 0.000 | | NumberOfTimes90DaysLate | 120269.0 | 0.211925 | 3.465276 | 0.0 | 0.000000 | 0.000 | It looks like the statistics before and after dropping the missing values are quite similar, except for the variable <code>DebtRatio</code>, where we have substantially lower means and standard deviation. Let's also have a look at the distribution of the variables for the rows that we have dropped df.loc[df.isna().any(axis=1)].describe().T | | count | mean | std | min | 25% | 50% | |--|---------|-------------|----------------------|------|------------|----------| | SeriousDlqin2yrs | 29731.0 | 0.056137 | 0.230189 | 0.0 | 0.000000 | 0.000000 | | age | 29731.0 | 56.362349 | 15.438786 | 21.0 | 46.000000 | 57.00000 | | NumberOfDependents | 25807.0 | 0.316310 | 0.809944 | 0.0 | 0.000000 | 0.000000 | | MonthlyIncome | 0.0 | NaN | NaN | NaN | NaN | NaN | | DebtRatio | 29731.0 | 1673.396556 | 4248.372895 | 0.0 | 123.000000 | 1159.000 | | RevolvingUtilizationOfUnsecuredLines | 29731.0 | 6.649421 | 217.814854 | 0.0 | 0.016027 | 0.081697 | | NumberOfOpenCreditLinesAndLoans | 29731.0 | 7.216071 | 4.842720 | 0.0 | 4.000000 | 6.000000 | | NumberRealEstateLoansOrLines | 29731.0 | 0.871481 | 1.034291 | 0.0 | 0.000000 | 1.000000 | | Number Of Time 30-59 Days Past Due Not Worse | 29731.0 | 0.579866 | 6.255361 | 0.0 | 0.000000 | 0.000000 | | Number Of Time 60-89 Days Past Due Not Worse | 29731.0 | 0.452995 | 6.242076 | 0.0 | 0.000000 | 0.000000 | | NumberOfTimes90DaysLate | 29731.0 | 0.484612 | 6.250408 | 0.0 | 0.000000 | 0.000000 | | | | | | | | | Again, the mean of the dropped rows seems to be substantially higher for the variable <code>DebtRatio</code> suggesting that the missing values are not missing entirely at random. Note, however, that the standard deviation is lower meaning that the dropped observations are more similar to each other in the <code>DebtRatio</code> dimension. From our data dictionary, we know that the <code>DebtRatio</code> is defined as ``` data_dict.loc[data_dict['Variable Name'] == 'DebtRatio'].style.hide() ``` Table 6.6 | Variable Name | Description | Type | |---------------|---|-------| | DebtRatio | Monthly debt payments, alimony, living costs divided by monthy gross income | perce | So, it seems that the DebtRatio is the ratio of the monthly debt payments to the monthly gross income. We actually have MonthlyIncome in our dataset! ``` data_dict.loc[data_dict['Variable Name'] == 'MonthlyIncome'].style.hide() ``` Table 6.7 | Variable Name | Description | Type | |---------------|----------------|------| | MonthlyIncome | Monthly income | real | It does not say whether this is in gross or net terms though. Nevertheless, let's have a look at the relationship between the DebtRatio and the MonthlyIncome ``` ax = df.plot.scatter(x='MonthlyIncome', y='DebtRatio') ax.set_xscale('log') ax.set_yscale('log') ax.set_xlabel('MonthlyIncome') ax.set_ylabel('DebtRatio') ax.set_title('DebtRatio vs. MonthlyIncome') plt.show() ``` This looks rather odd. Note how there are a lot of monthly incomes that are close to zero. Furthermore, there is a weird gap going through the scatter points. We can look at the descriptive statistics of the rows with MonthlyIncome less than 100 df.query('MonthlyIncome <= 100').describe().T</pre> | | count | mean | std | min | 25% | 50% | |---|--------|-------------|-------------|------|-----------|------------| | SeriousDlqin2yrs | 2301.0 | 0.036506 | 0.187586 | 0.0 | 0.000000 | 0.000000 | | age | 2301.0 | 47.740113 | 16.199176 | 21.0 | 35.000000 | 46.000000 | | NumberOfDependents | 2301.0 | 0.778792 | 1.192441 | 0.0 | 0.000000 | 0.000000 | | MonthlyIncome | 2301.0 | 1.837027 | 11.408271 | 0.0 | 0.000000 | 0.000000 | | DebtRatio | 2301.0 | 1370.529300 | 2752.843610 | 0.0 | 79.000000 | 732.000000 | | Revolving Utilization Of Unsecured Lines | 2301.0 | 3.604101 | 125.553453 | 0.0 | 0.022243 | 0.113149 | | ${\bf Number Of Open Credit Lines And Loans}$ | 2301.0 | 7.171230 | 4.869628 | 0.0 | 4.000000 | 6.000000 | | ${\bf Number Real Estate Loans Or Lines}$ | 2301.0 | 0.742721 | 0.904984 | 0.0 | 0.000000 | 1.000000 | | Number Of Time 30-59 Days Past Due Not Worse | 2301.0 | 0.549326 | 6.132226 | 0.0 | 0.000000 | 0.000000 | | Number Of Time 60-89 Days Past Due Not Worse | 2301.0 | 0.428509 | 6.124274 | 0.0 | 0.000000 | 0.000000 | | ${\bf Number Of Times 90 Days Late}$ | 2301.0 | 0.438505 | 6.128357 | 0.0 | 0.000000 | 0.000000 | These observations seem to have a higher $\mathtt{debtRatio}$ than the rest of the dataset but are less likely to default on their loans (the mean of SeriousDlqin2yrs is equal to the fraction of defaulting loans). Given that they have no income (or essentially no income), this seems rather odd and is likely due to an error during data entry/collection. Since there are only a small number of observations with MonthlyIncome less than 100, we can probably drop them. Let's look at the same figure for MonthlyIncome greater than 100 ``` ax = df.query('MonthlyIncome > 100').plot.scatter(x='MonthlyIncome', y='DebtRatio') ax.set_xscale('log') ax.set_yscale('log') ax.axvline(10**3, color='black', linestyle=':') ax.axhline(10**(-3), color='black', linestyle=':') ax.plot([10, 10**5], [10**(-1), 10**(-5)], color='black', linestyle='--') ax.set_xlabel('MonthlyIncome') ax.set_ylabel('DebtRatio') ax.set_title('DebtRatio vs. MonthlyIncome') plt.show() ``` This looks better but note how the scatter points below the gap seem to line up with the line $\frac{1}{\text{MonthlyIncome}}$. Thus, there seems to be another potential data entry/collection error since the debt in the raw data has likely been just set to 1 for these observations. If this was a real dataset, we would need to investigate this further and maybe talk to the people who have sent us the data. However, given that this is just an example, we leave it as is. Let's also have a look at the distribution of DebtRatio variable Where we can again see the high <code>DebtRatio</code> values for the rows with missing values. We can also have a look at the distribution of all the variables in the dataset ``` fig, ax = plt.subplots(df.shape[1], 3, figsize=(10, 20)) for ii, col in enumerate(df.columns): # Plot the distribution of the variable for the whole dataset, the dataset with missing values dropped, and the dropped rows if col in ('SeriousDlqin2yrs', 'age', 'NumberOfTime30-59DaysPastDueNotWorse', 'NumberOfOpenCreditLinesAndLoans', 'NumberOfTimes90DaysLate', 'NumberRealEstateLoansOrLines', 'NumberOfTime60-89DaysPastDueNotWorse', 'NumberOfDependents'): ``` ``` # Use a bar plot for discrete variables df[col].value_counts(normalize=True).sort_index().plot.b_ \rightarrow ar(ax=ax[ii,0]) df.dropna()[col].value_counts(normalize=True).sort_index_ ().plot.bar(ax=ax[ii,1]) df.loc[df.isna().any(axis=1), col].value_counts(normaliz_ e=True).sort_index().plot.bar(ax=ax[ii,2]) # Set the y-axis label ax[ii,0].set ylabel('Fraction') ax[ii,1].set_ylabel('') ax[ii,2].set_ylabel('') else: # Use a histogram for continuous variables df[col].plot.hist(bins=1000, ax=ax[ii,0]) df.dropna()[col].plot.hist(bins=1000, ax=ax[ii,1]) df.loc[df.isna().any(axis=1), col].plot.hist(bins=1000, \Rightarrow ax=ax[ii,2]) # Set the x-axis to a logarithmic scale for the ax[ii,0].set_xscale('log') ax[ii,1].set_xscale('log') ax[ii,2].set_xscale('log') # Set the x-axis label ax[ii,0].set xlabel(col) ax[ii,1].set_xlabel(col) ax[ii,2].set_xlabel(col) # Set the y-axis label ax[ii,0].set_ylabel('Frequency') ax[ii,1].set_ylabel('') ax[ii,2].set_ylabel('') ax[0,0].set_title('Whole Dataset') ax[0,1].set_title('Rows with Missing Values Dropped') ax[0,2].set_title('Dropped Rows') fig.tight_layout() plt.show() ``` This shows another potential issue with our dataset. Checkout the variable NumberOfTime30-59DaysPastDueNotWorse. It seems that there are a some observations with values greater than 90. This seems rather odd. Let's have a look at the data dictionary Table 6.9 | Variable Name | Description | |--|---| | $\overline{\text{NumberOfTime} 30\text{-}59 \text{DaysPastDueNotWorse}}$ | Number of times borrower has been 30-59 days past due | | NumberOfTimes90DaysLate | Number of times borrower has been 90 days or more pas | | ${\bf Number Of Time 60-89 Days Past Due Not Worse}$ | Number of times borrower has been 60-89 days past due | The data dictionary does not mention anything about values above 90. These values may have a special meaning such as being a flag for missing values. Let's have a look at the distribution of the target variable for the rows with values greater than 90 ``` df.loc[df['NumberOfTime30-59DaysPastDueNotWorse'] > 90, Goup 'SeriousDlqin2yrs'].value_counts() SeriousDlqin2yrs 147 1 0 122 Name: count, dtype: int64 df.loc[df['NumberOfTime60-89DaysPastDueNotWorse'] > 90, Goup 'SeriousDlqin2yrs'].value_counts() SeriousDlqin2yrs 1 147 122 Name: count, dtype: int64 df.loc[df['NumberOfTimes90DaysLate'] > 90, Goup 'SeriousDlqin2yrs'].value_counts() ``` ``` SeriousDlqin2yrs ``` 147 122 Name: count, dtype: int64 #### SeriousDlqin2yrs 147 122 Name: count, dtype: int64 There seems to be a very high number of defaults for these observations (more than half), which makes sense given the meaning of these variables. Furthermore, the observations with above 90 in one category have it above 90 in the other categories as well. Thus, this might not be a data entry/collection error and these are just borrowers who commonly fail to make loan payments. Given that Alonso Robisco and Carbó Martínez (2022) seem to be dropping the missing values, let's do the same for our
dataset ``` df = df.dropna() ``` and let's also drop the rows with MonthlyIncome less than (or equal) 100 ``` df = df.query('MonthlyIncome > 100') ``` to eliminate some of the potential data entry/collection errors. Then double-check that we have no missing values left ``` df.isna().sum() ``` ``` SeriousDlqin2yrs 0 0 age NumberOfDependents 0 MonthlyIncome 0 DebtRatio 0 RevolvingUtilizationOfUnsecuredLines 0 {\tt NumberOfOpenCreditLinesAndLoans} 0 NumberRealEstateLoansOrLines 0 0 NumberOfTime30-59DaysPastDueNotWorse NumberOfTime60-89DaysPastDueNotWorse 0 NumberOfTimes90DaysLate 0 ``` dtype: int64 or, alternatively, ``` df.info() ``` <class 'pandas.core.frame.DataFrame'> Index: 117968 entries, 0 to 149999 Data columns (total 11 columns): | # | Column | Non-Null Count | Dtype | |-------|--------------------------------------|-----------------|---------| | | | | | | 0 | SeriousDlqin2yrs | 117968 non-null | int64 | | 1 | age | 117968 non-null | int64 | | 2 | NumberOfDependents | 117968 non-null | float64 | | 3 | MonthlyIncome | 117968 non-null | float64 | | 4 | DebtRatio | 117968 non-null | float64 | | 5 | RevolvingUtilizationOfUnsecuredLines | 117968 non-null | float64 | | 6 | NumberOfOpenCreditLinesAndLoans | 117968 non-null | int64 | | 7 | NumberRealEstateLoansOrLines | 117968 non-null | int64 | | 8 | NumberOfTime30-59DaysPastDueNotWorse | 117968 non-null | int64 | | 9 | NumberOfTime60-89DaysPastDueNotWorse | 117968 non-null | int64 | | 10 | NumberOfTimes90DaysLate | 117968 non-null | int64 | | d+ vn | ag: float64(4) int64(7) | | | dtypes: float64(4), int64(7) memory usage: 10.8 MB All good! We should also check for duplicated rows with the ${\tt duplicated}()$ method #### df.loc[df.duplicated()] | | SeriousDlqin2yrs | age | NumberOfDependents | MonthlyIncome | DebtRatio | RevolvingUt | |--------|------------------|-----|--------------------|---------------|-----------|-------------| | 7920 | 0 | 22 | 0.0 | 820.0 | 0.0 | 1.0 | | 8840 | 0 | 23 | 0.0 | 820.0 | 0.0 | 1.0 | | 15546 | 0 | 22 | 0.0 | 929.0 | 0.0 | 0.0 | | 17265 | 0 | 22 | 0.0 | 820.0 | 0.0 | 1.0 | | 21190 | 0 | 22 | 0.0 | 820.0 | 0.0 | 1.0 | | | | | | | | | | 143750 | 0 | 23 | 0.0 | 820.0 | 0.0 | 1.0 | | 144153 | 0 | 28 | 0.0 | 2200.0 | 0.0 | 1.0 | | 144922 | 0 | 40 | 0.0 | 3500.0 | 0.0 | 0.0 | | 148419 | 0 | 22 | 0.0 | 1500.0 | 0.0 | 0.0 | | 149993 | 0 | 22 | 0.0 | 820.0 | 0.0 | 1.0 | and look at the statistics of the duplicated rows #### df.loc[df.duplicated()].describe().T | | count | mean | std | min | 25% | 50% | |--------------------|-------|-----------|----------|------|------|------| | SeriousDlqin2yrs | 72.0 | 0.013889 | 0.117851 | 0.0 | 0.0 | 0.0 | | age | 72.0 | 24.902778 | 8.868618 | 21.0 | 22.0 | 22.5 | | NumberOfDependents | 72.0 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | | | count | mean | std | min | 25% | 50% | 75% | |---|-------|-------------|------------|-------|-------|-------|-------| | MonthlyIncome | 72.0 | 1031.527778 | 542.007873 | 764.0 | 820.0 | 820.0 | 929.0 | | DebtRatio | 72.0 | 0.017594 | 0.104816 | 0.0 | 0.0 | 0.0 | 0.0 | | Revolving Utilization Of Unsecured Lines | 72.0 | 0.500000 | 0.503509 | 0.0 | 0.0 | 0.5 | 1.0 | | ${\bf Number Of Open Credit Lines And Loans}$ | 72.0 | 1.458333 | 0.749413 | 0.0 | 1.0 | 1.0 | 2.0 | | ${\bf Number Real Estate Loans Or Lines}$ | 72.0 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | | Number Of Time 30-59 Days Past Due Not Worse | 72.0 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | | ${\bf Number Of Time 60\text{-}89 Days Past Due Not Worse}$ | 72.0 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | | ${\bf Number Of Times 90 Days Late}$ | 72.0 | 0.013889 | 0.117851 | 0.0 | 0.0 | 0.0 | 0.0 | There are indeed 72 duplicated rows in the dataset. However, given the variables in our dataset, which are mostly discrete, the fact that monthly income seems to be generally rounded, it does not seem implausible that some rows might appear multiple times in the dataset, simply because some observations have the same values for all variables. Thus, we will keep the duplicated rows in the dataset. ## 6.6 Data Exploration Let's start by looking at the distribution of the target variable ${\tt SeriousDlqin2yrs}$ in our preprocessed dataset ``` df.value_counts("SeriousDlqin2yrs").plot.pie(autopct = "%.1f") plt.ylabel('') plt.show() ``` We have already looked at some variables selectively. To do it more broadly, we can look at the pair plot of the dataset. A pair plot shows the pairwise relationships between the variables in our dataset. On the diagonal, we are plotting the kernel density estimate ``` sns.pairplot(df.sample(1000), hue='SeriousDlqin2yrs') ``` Note that we are plotting all variables in different colors based on whether our target variable SeriousDlqin2yrs is 0 or 1. Furthermore, since it is computationally quite demanding to create this plot, we have sampled only 1000 rows from the dataset. Since we have many variables, some of them with very skewed distributions, and also several discrete variables, it might make sense to look only at a subset ``` if ax.get_xlabel() == 'DebtRatio': ax.set(xscale="log") ax.set_xlim(10**(-5), 10**3) if ax.get_ylabel() == 'DebtRatio': ax.set(yscale="log") ax.set_ylim(10**(-5), 10**3) ``` We can continue with the analysis of our dataset by looking at the correlation matrix of the variables in the dataset. We will calculate both the Pearson correlation (linear relationship) and the Spearman correlation (monotonic relationship) and create a heatmap of both correlation matrices ``` corr = df.corr() # Calculate the Pearson correlation (linear relationship) cmap = sns.diverging_palette(10, 255, as_cmap=True) # Create a color map mask = np.triu(np.ones_like(corr, dtype=bool)) # Create a mask to only show the lower triangle of the matrix sns.heatmap(corr, cmap=cmap, vmax=1, center=0, mask=mask) # Create a heatmap of the correlation matrix (Note: vmax=1 makes sure that the color map goes up to 1 and center=0 are used to center the color map at 0) ``` #### plt.show() It seems that age is negatively correlated with default (SeriousDlqin2yrs) which we can also see in the kernel density estimate of the age variable ``` sns.kdeplot(data=df, x='age', hue='SeriousDlqin2yrs', cut=0, fill=True, common_norm=False) plt.show() ``` but then MonthlyIncome is also negatively correlated with default and with age. Thus, likely the relationship between age and default is driven by MonthlyIncome. Furthermore, the variables NumberOfTime30-59DaysPastDueNotWorse, NumberOfTime60-89DaysPastDueNotWorse, and NumberOfTimes90DaysLate are highly correlated with each other and with the target variable SeriousDlqin2yrs. This is not surprising given that these variables are all related to the number of times a borrower has been past due on a loan payment. RevolvingUtilizationOfUnsecuredLines is also highly correlated with the target variable and with the number of times a borrower has been past due on a loan payment. This is also not surprising given that the RevolvingUtilizationOfUnsecuredLines is the ratio of the amount of money owed to the amount of credit available. # 6.7 Implementation of Loan Default Prediction Models We have explored our dataset and are now ready to implement machine learning algorithms for loan default prediction. Let's start by importing the required libraries ``` from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from sklearn.neural_network import MLPClassifier from sklearn.metrics import confusion_matrix, accuracy_score, coc_auc_score, recall_score, precision_score, roc_curve from joblib import dump, load ``` #### 6.7.1 Splitting the Data into Training and Test Sets Before we can train a machine learning model, we need to split our dataset into a training set and a test set. ``` X = df.drop('SeriousDlqin2yrs', axis=1) # All variables except `SeriousDlqin2yrs` y = df['SeriousDlqin2yrs'] # Only SeriousDlqin2yrs ``` We follow Alonso Robisco and Carbó Martínez (2022) and use 80% of the data for training and 20% for testing. We will also set the stratify argument to y to make sure that the distribution of the target variable is the same in the training and test sets. Otherwise, we might randomly not have any defaulted loans in the test set, which would make it impossible to correctly evaluate our model. #### 6.7.2 Scaling Features To improve the performance of our machine learning model, we should scale the features. This is especially important for models that are sensitive to the scale of the features. We will use the MinMaxScaler class from the sklearn.preprocessing module to scale the features. The MinMaxScaler class scales the features so that they have a minimum of 0 and a maximum of 1. ``` def scale_features(scaler, df, col_names, only_transform=False): # Extract the features we want to scale features = df[col_names] # Fit the scaler to the features and transform them if only_transform: ``` ``` features = scaler.transform(features.values) else: features = scaler.fit_transform(features.values) # Replace the original features with the scaled features df[col_names] = features scaler = MinMaxScaler() scale_features(scaler, X_train, X_train.columns) scale_features(scaler, X_test, X_test.columns, only_transform=True) ``` Note that we have very skewed distributions for some variables in our dataset. This might make the MinMaxScaler less effective and there might be gains from more carefully scaling different variables. However, for the sake of simplicity, we will use the MinMaxScaler for all variables. We have fully preprocessed and explored our dataset. The next step will be our main task: the implementation of machine learning algorithms for loan default prediction. ####
6.7.3 Evaluation Criertia We will evaluate the performance of our machine-learning models using the following metrics: - Accuracy: The proportion of correctly classified instances - **Precision**: The proportion of true positive predictions among all positive predictions - Recall: The proportion of true positive predictions among all actual positive instances - ROC AUC: The area under the receiver operating characteristic curve Furthermore, we will plot the ROC curve for each model to visualize the trade-off between the true positive rate and the false positive rate. To make the evaluation of our models more convenient, we will define a function that computes these metrics and plots the ROC curve for a given model ``` def evaluate_model(clf, X_train, y_train, X_test, y_test, label=''): # Compute predictions and probabilities for tha training and test set y_pred_train = clf.predict(X_train) y_proba_train = clf.predict_proba(X_train) y_pred_test = clf.predict(X_test) y_proba_test = clf.predict_proba(X_test) ``` ``` # Print accuracy measures print(f"------ print(f"Metrics: {label}") print(f"----- print(f"Accuracy (Train): {accuracy_score(y_train, y_pred_train)}") print(f"Precision (Train): {precision_score(y_train, y_pred_train)}") print(f"Recall (Train): {recall_score(y_train, y_pred_train)}") print(f"ROC AUC (Train): {roc_auc_score(y_train, y_proba_train[:, 1])}") print(f"----- print(f"Accuracy (Test): {accuracy_score(y_test, y_pred_test)}") print(f"Precision (Test): {precision_score(y_test, y_pred_test)}") print(f"Recall (Test): {recall_score(y_test, y_pred_test)}") print(f"ROC AUC (Test): {roc_auc_score(y_test, y_proba_test[:, 1])}") print(f"----- → -----") # Compute the ROC curve fpr_train, tpr_train, thresholds_train = roc_curve(y_train, y_proba_train[:, 1]) fpr_test, tpr_test, thresholds_test = roc_curve(y_test, y_proba_test[:, 1]) # Plot the ROC curve plt.plot(fpr_train, tpr_train, label = "Train") plt.plot(fpr_test, tpr_test, label = "Test") plt.plot([0, 1], [0, 1], linestyle='--', color='grey') plt.xlabel('False Positive Rate (FPR)') plt.ylabel('True Positive Rate (TPR)') plt.title(f'ROC Curve: {label}') plt.legend() plt.show() ``` While we compute all of these metrics, we will focus on the ROC AUC score as our main evaluation metric. #### 6.7.4 Logistic Regression Let's start with a simple logistic regression model. We will use the LogisticRegression class from the sklearn.linear_model module to train a logistic regression model. We will use the lbfgs solver and set the max_iter parameter to 5000 to make sure that the optimization algorithm converges. We will also set the penalty parameter to None to avoid regularization. ``` clf_logistic = LogisticRegression(penalty = None, solver = 'lbfgs', max_iter = 5000).fit(X_train, y_train) ``` Let's evaluate the performance of the logistic regression model ``` evaluate_model(clf_logistic, X_train, y_train, X_test, y_test, abel = 'Logistic Regression') ``` ``` ----- ``` Metrics: Logistic Regression _____ Accuracy (Train): 0.9306588679085341 Precision (Train): 0.5787234042553191 Recall (Train): 0.041100030220610456 ROC AUC (Train): 0.6936171984517471 ----- Accuracy (Test): 0.9302788844621513 Precision (Test): 0.5490196078431373 Recall (Test): 0.033836858006042296 ROC AUC (Test): 0.6926238627317243 The model does not perform as well as what we have seen in previous lectures. The ROC AUC score is only around 0.7. Note again that the accuracy score is quite high but this is due to the imbalanced nature of the dataset. #### 6.7.5 Decision Tree Let's now train a decision tree classifier. We will use the DecisionTreeClassifier class from the sklearn.tree module to train a decision tree classifier. We will set the max_depth parameter to 7 as in Alonso Robisco and Carbó Martínez (2022) to avoid overfitting. ``` clf_tree = DecisionTreeClassifier(max_depth=7).fit(X_train, y_train) ``` Then, let's evaluate the performance of the decision tree classifier ``` evaluate_model(clf_tree, X_train, y_train, X_test, y_test, label = 'Decision Tree') ``` ----- Metrics: Decision Tree ----- Accuracy (Train): 0.936348994426431 #### 6.7. IMPLEMENTATION OF LOAN DEFAULT PREDICTION MODELS157 Precision (Train): 0.6407185628742516 Recall (Train): 0.2101843457237836 ROC AUC (Train): 0.8265896261153018 ______ Accuracy (Test): 0.9323556836483852 Precision (Test): 0.5529622980251346 Recall (Test): 0.18610271903323264 ROC AUC (Test): 0.8159823399376106 ______ The decision tree classifier performs better than the logistic regression model with a ROC AUC score of around 0.77. This is not surprising given that decision trees are more flexible models that can capture non-linear relationships in the data. #### 6.7.6 Random Forest Let's now train a random forest classifier. We will use the RandomForestClassifier class from the sklearn.ensemble module to train a random forest classifier. We will set the max_depth parameter to 20 and the n_estimators parameter to 100 as in Alonso Robisco and Carbó Martínez (2022). Then, let's evaluate the performance of the random forest classifier ``` evaluate_model(clf_forest, X_train, y_train, X_test, y_test, abel = 'Random Forest') ``` ----- Metrics: Random Forest _____ Accuracy (Train): 0.976126899357874 Precision (Train): 1.0 Recall (Train): 0.6595648232094289 ROC AUC (Train): 0.9956114701590723 _____ Accuracy (Test): 0.9321013817072137 Precision (Test): 0.5495327102803739 Recall (Test): 0.17764350453172206 ROC AUC (Test): 0.8400146575047622 _____ #### 6.7. IMPLEMENTATION OF LOAN DEFAULT PREDICTION MODELS159 This is a good example of the dangers of not using a test set for the evaluation of a model. The random forest classifier performs very well on the training set with a ROC AUC score of close to 1.0. However, it performs much worse on the test set with a ROC AUC score of around 0.83. Nevertheless, the random forest classifier still outperforms the logistic regression and decision tree classifiers. #### 6.7.7 XGBoost Let's now train an XGBoost classifier. We will use the XGBClassifier class from the xgboost module to train an XGBoost classifier. We will set the max_depth parameter to 5 and the n_estimators parameter to 40 as in Alonso Robisco and Carbó Martínez (2022). Then, let's evaluate the performance of the XGBoost classifier ``` evaluate_model(clf_xgb, X_train, y_train, X_test, y_test, label = 'XGBoost') ``` ``` ----- ``` Metrics: XGBoost _____ Accuracy (Train): 0.9389238561468201 Precision (Train): 0.6947992700729927 Recall (Train): 0.23012994862496222 ROC AUC (Train): 0.8778826700467908 ----- Accuracy (Test): 0.9330762058150377 Precision (Test): 0.57011070110701111 Recall (Test): 0.18670694864048337 ROC AUC (Test): 0.8514290998289821 The XGBoost classifier performs quite well with an ROC AUC score of around 0.83. This is the best performance we have seen so far. #### 6.7.8 Neural Network Finally, let's train a neural network classifier. We will use the MLPClassifier class from the sklearn.neural_network module to train a neural network classifier. We will set the activation parameter to relu, the solver parameter to adam, and the hidden_layer_sizes parameter to (300,200,100) as in Alonso Robisco and Carbó Martínez (2022). We will also set the random_state parameter to 42 to make the results reproducible. Since training the neural network classifier can take a long time, we have saved the trained model to a file called clf_nn.joblib. We can load the model from the file using the load function from the joblib module ``` clf_nn = load('clf_nn.joblib') ``` #### 6.7. IMPLEMENTATION OF LOAN DEFAULT PREDICTION MODELS161 Let's check the loss curve of the neural network classifier ``` plt.plot(clf_nn.loss_curve_) plt.title("Loss Curve", fontsize=14) plt.xlabel('Iterations') plt.ylabel('Cost') plt.show() ``` Then, let's evaluate the performance of the neural network classifier ``` evaluate_model(clf_nn, X_train, y_train, X_test, y_test, label = 'Neural Network') ``` ----- Metrics: Neural Network _____ Accuracy (Train): 0.9465742683366182 Precision (Train): 0.8080531665363565 Recall (Train): 0.31233000906618313 ROC AUC (Train): 0.8682599095370773 ______ Accuracy (Test): 0.9282020852759176 Precision (Test): 0.4694835680751174 Recall (Test): 0.18126888217522658 ROC AUC (Test): 0.7983637135044449 ______ #### 6.8 Overview of the Results Looking at all the models side by side, we can see that | | Model | ROC AUC (Train) | ROC AUC (Test) | |---|---------------------|-----------------|----------------| | 0 | Logistic Regression | 0.693617 | 0.692624 | | 1 | Decision Tree | 0.826590 | 0.815982 | | 2 | Random Forest | 0.995611 | 0.840015 | | 3 | XGBoost | 0.877883 | 0.851429 | | 4 | Neural Network | 0.868260 | 0.798364 | | | | | | But can we do better? Alonso Robisco and Carbó Martínez (2022) have also applied feature engineering to the dataset. Let's see if we can improve the performance of our models by adding some additional features. # 6.9 Feature Engineering and Model Improvement We will add the square of each feature to the dataset to create additional features as in Alonso Robisco and Carbó Martínez (2022). We will use the assign method of the pandas DataFrame to add the squared features to the dataset ``` X2 = df.drop('SeriousDlqin2yrs', axis=1) # All variables except `SeriousDlqin2yrs` y2 = df['SeriousDlqin2yrs'] # Only SeriousDlqin2yrs X2 = X2.assign(**X2.pow(2).add_suffix('_sq')) # Add the squared features to the dataset ``` Then, we will split the dataset into a training set and a test set and scale the features Let's train the models again with the new dataset and evaluate their performance ``` clf_logistic2 = LogisticRegression(penalty = None, solver = 'lbfgs', max_iter = 5000).fit(X2_train, y2_train) clf_tree2 = DecisionTreeClassifier(max_depth=7).fit(X2_train, y2_train) clf_forest2 = RandomForestClassifier(max_depth=20, n_estimators = 100).fit(X2_train, y2_train) clf_xgb2 = XGBClassifier(max_depth = 5, n_estimators = 40, random_state = 0).fit(X2_train,
y2_train) #clf_nn2 = MLPClassifier(activation='relu', solver='adam', hidden_layer_sizes=(300,200,100), random_state=42, max_iter = 300, verbose=True).fit(X2_train, y2_train) #dump(clf_nn2, 'clf_nn2.joblib') ``` The neural network classifier takes a long time to train, so we will load the model from the file clf_nn2.joblib that we saved earlier ``` clf_nn2 = load('clf_nn2.joblib') ``` Furthermore, we will also add a LASSO penalty to the logistic regression model to see if we can improve its performance ``` clf_logistic_lasso2 = LogisticRegression(penalty = 'l1', solver = 'liblinear').fit(X2_train, y2_train) ``` Let's evaluate the performance of the models with the new features in the dataset ``` results2 = pd.DataFrame({ 'Model': ['Logistic Regression', 'Decision Tree', 'Random → Forest', 'XGBoost', 'Neural Network', 'Logistic LASSO'], 'ROC AUC (Train)': [roc auc score(y2 train, clf_logistic2.predict_proba(X2_train)[:, 1]), roc_auc_score(y2_train, clf_tree2.predict_proba(X2_train)[:, 1]), roc_auc_score(y2_train, clf_forest2.predict_proba(X2_train)[:, 1]), roc_auc_score(y2_train, clf_xgb2.predict_proba(X2_train)[:, 1]), roc_auc_score(y2_train, clf_nn2.predict_proba(X2_train)[:, 1]), roc_auc_score(y2_train, clf_logistic_lasso2.predict_proba(X2_train)[:, 1])], 'ROC AUC (Test)': [roc auc score(y2 test, clf_logistic2.predict_proba(X2_test)[:, 1]), ``` | | Model | ROC AUC (Train) | ROC AUC (Test) | |---|---------------------|-----------------|----------------| | 0 | Logistic Regression | 0.810256 | 0.813330 | | 1 | Decision Tree | 0.826549 | 0.814273 | | 2 | Random Forest | 0.994439 | 0.838450 | | 3 | XGBoost | 0.877883 | 0.851429 | | 4 | Neural Network | 0.871913 | 0.794420 | | 5 | Logistic LASSO | 0.804410 | 0.810687 | | | | | | The models with the new features in the dataset perform better than the models without the new features. The random forest classifier and the XGBoost classifier have the best performance with ROC AUC scores of around 0.84 and 0.85, respectively. ### 6.10 Feature Importance We can also look at the feature importance of the random forest classifier and the XGBoost classifier to see which features are most important for predicting loan defaults. We will use the feature_importances_ attribute of the random forest classifier and the XGBoost classifier to get the feature importances ``` feature_importances_forest = clf_forest2.feature_importances_ feature_importances_xgb = clf_xgb2.feature_importances_ ``` Then, we will create a bar plot of the feature importances for the random forest classifier and the XGBoost classifier ``` df_feature_importance_forest = df_feature_importance_forest.sort_values('Importance', ascending=False) df_feature_importance_xgb = pd.DataFrame({'Feature': df_feature_importance_xgb = ¬ df_feature_importance_xgb.set_index('Feature') df_feature_importance_xgb = df_feature_importance_xgb.loc[df_fea_ ture_importance_forest['Feature'], # Random Forest ax[0].barh(df_feature_importance_forest['Feature'], df feature importance forest['Importance']) ax[0].set_title('Random Forest') ax[0].set_xlabel('Feature Importance') ax[0].set_ylabel('Feature') # XGBoost ax[1].barh(df_feature_importance_forest['Feature'], df_feature_importance_xgb['Importance']) ax[1].set_title('XGBoost') ax[1].set_xlabel('Feature Importance') ax[1].set_ylabel('Feature') fig.tight_layout() plt.show() ``` #### 6.11 Conclusions We have successfully implemented machine learning algorithms for loan default prediction. We have explored the dataset, preprocessed the data, trained several machine learning models, and evaluated their performance. We have also 167 applied feature engineering to the dataset and improved the performance of the models. The random forest classifier and the XGBoost classifier have the best performance with ROC AUC scores of around 0.84 and 0.85, respectively. We have also looked at the feature importance of the random forest classifier and the XGBoost classifier to see which features are most important for predicting loan defaults. # Chapter 7 # House Price Prediction The focus of the previous examples in this course was on classification problems. However, regression problems are also quite common in practice and it will be what we will try to explore in this application. ### 7.1 Problem Setup The dataset that we will be using is the Kaggle dataset called "House Sales in King County, USA". As far as I know, this was not used in a Kaggle competition. However, it is a quite popular dataset on Kaggle. The description reads: This dataset contains house sale prices for King County, which includes Seattle. It includes homes sold between May 2014 and May 2015. It's a great dataset for evaluating simple regression models. This means that the dataset is a snapshot of house prices in King County, USA, between May 2014 and May 2015. The task, then, is quite straightforward: given a set of features, we want to predict the price of a house. #### 7.2 Dataset Unfortunately, the dataset does not have a detailed description of the variables. However, in the comment section, some users found references with variable descriptions. The variables in the dataset should be as follows: | Variable | Description | | |----------|------------------------------|--| | id | Unique ID for each home sold | | | date | Date of the home sale | | | Variable | Description | | | | |---------------|--|--|--|--| | price | Price of each home sold | | | | | bedrooms | Number of bedrooms | | | | | bathrooms | Number of bathrooms, where .5 accounts for a room with a toilet but no shower | | | | | sqft_living | Square footage of the apartments' interior living space | | | | | $sqft_lot$ | Square footage of the land space | | | | | floors | Number of floors | | | | | waterfront | A dummy variable for whether the apartment was | | | | | | overlooking the waterfront or not | | | | | view | An index from 0 to 4 of how good the view of the property | | | | | | was | | | | | condition | An index from 1 to 5 on the condition of the apartment | | | | | grade | An index from 1 to 13, where 1-3 falls short of building construction and design, 7 has an average level of construction and design, and 11-13 have a high quality | | | | | Cı 1 | level of construction and design. | | | | | sqft_above | The square footage of the interior housing space that is above ground level | | | | | sqft_basement | The square footage of the interior housing space that is
below ground level | | | | | yr_built | The year the house was initially built | | | | | yr renovated | The year of the house's last renovation | | | | | zipcode | What zipcode area the house is in | | | | | lat | Lattitude | | | | | long | Longitude | | | | | sqft_living15 | The square footage of interior housing living space for the nearest 15 neighbors | | | | | sqft_lot15 | The square footage of the land lots of the nearest 15 neighbors | | | | # 7.3 Putting the Problem into the Context of the Course The problem of predicting house prices is a **regression problem** which belongs to the type of **supervised learning** problems. We will use the same tools that we have used in the previous examples to solve this problem. The main difference is that we will be using regression models instead of classification models. ## 7.4 Setting up the Environment We will start by setting up the environment by importing the necessary libraries ``` import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns ``` Let's download the dataset automatically, unzip it, and place it in a folder called data if you haven't done so already ``` from io import BytesIO from urllib.request import urlopen from zipfile import ZipFile import os.path # Check if the file exists if not os.path.isfile('data/kc_house_data.csv'): print('Downloading dataset...') # Define the dataset to be downloaded zipurl = 'https://www.kaggle.com/api/v1/datasets/download/ha| rlfoxem/housesalesprediction' # Download and unzip the dataset in the data folder with urlopen(zipurl) as zipresp: with ZipFile(BytesIO(zipresp.read())) as zfile: zfile.extractall('data') print('DONE!') else: print('Dataset already downloaded!') ``` #### Dataset already downloaded! Then, we can load the data into a DataFrame using the <code>read_csv</code> function from the <code>pandas</code> library ``` df = pd.read_csv('data/kc_house_data.csv') ``` Let's also download some precomputed models that we will use later on ``` for file_name in ['reg_nn.joblib', 'reg_nn_cv.joblib', 'reg_xgb_cv.joblib', 'reg_rf_cv.joblib.zip']: if not os.path.isfile(file_name): ``` ``` print(f'Downloading {file_name}...') # Generate the download link url = f'https://github.com/jmarbet/data-science-course/r aw/main/notebooks/{file_name}' if file_name.endswith('.zip'): # Download and unzip the file with urlopen(url) as zipresp: with ZipFile(BytesIO(zipresp.read())) as zfile: zfile.extractall('') else: # Download the file with urlopen(url) as response, open(file_name, 'wb') as out_file: data = response.read() out_file.write(data) print('DONE!') else: print(f'{file_name} already downloaded!') ``` ``` reg_nn.joblib already downloaded! reg_nn_cv.joblib already downloaded! reg_xgb_cv.joblib already downloaded! reg_rf_cv.joblib.zip already downloaded! ``` ### 7.5 Data Exploration As with any new dataset, we first need to familiarize ourselves with the data. We will start by looking at the first few rows of the dataset. | | 0 | 1 | 2 | 3 | |----------|-------------------|-------------------|-------------------|-------------------| | id | 7129300520 | 6414100192 | 5631500400 | 2487200875 | | date | 20141013 T0000000 | 20141209 T0000000 | 20150225 T0000000 | 20141209 T0000000 | | price | 221900.0 | 538000.0 | 180000.0 | 604000.0 | | bedrooms | 3 | 3 | 2 | 4 | | | 0 | 1 | 2 | 3 | |---------------|----------|----------
----------|----------| | bathrooms | 1.0 | 2.25 | 1.0 | 3.0 | | sqft_living | 1180 | 2570 | 770 | 1960 | | $sqft_lot$ | 5650 | 7242 | 10000 | 5000 | | floors | 1.0 | 2.0 | 1.0 | 1.0 | | waterfront | 0 | 0 | 0 | 0 | | view | 0 | 0 | 0 | 0 | | condition | 3 | 3 | 3 | 5 | | grade | 7 | 7 | 6 | 7 | | sqft_above | 1180 | 2170 | 770 | 1050 | | sqft_basement | 0 | 400 | 0 | 910 | | yr_built | 1955 | 1951 | 1933 | 1965 | | yr_renovated | 0 | 1991 | 0 | 0 | | zipcode | 98178 | 98125 | 98028 | 98136 | | lat | 47.5112 | 47.721 | 47.7379 | 47.5208 | | long | -122.257 | -122.319 | -122.233 | -122.393 | | sqft_living15 | 1340 | 1690 | 2720 | 1360 | | sqft_lot15 | 5650 | 7639 | 8062 | 5000 | and for reference, we can also run ${\tt df.info}$ () again to see the data types of the variables #### df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 21613 entries, 0 to 21612 Data columns (total 21 columns): | # | Column | Non-Null Count | Dtype | |----|-------------------------|----------------|---------| | | | | | | 0 | id | 21613 non-null | int64 | | 1 | date | 21613 non-null | object | | 2 | price | 21613 non-null | float64 | | 3 | bedrooms | 21613 non-null | int64 | | 4 | bathrooms | 21613 non-null | float64 | | 5 | sqft_living | 21613 non-null | int64 | | 6 | sqft_lot | 21613 non-null | int64 | | 7 | floors | 21613 non-null | float64 | | 8 | waterfront | 21613 non-null | int64 | | 9 | view | 21613 non-null | int64 | | 10 | condition | 21613 non-null | int64 | | 11 | grade | 21613 non-null | int64 | | 12 | sqft_above | 21613 non-null | int64 | | 13 | sqft_basement | 21613 non-null | int64 | | 14 | <pre>yr_built</pre> | 21613 non-null | int64 | | 15 | <pre>yr_renovated</pre> | 21613 non-null | int64 | ``` 16 zipcode 21613 non-null int64 17 lat 21613 non-null float64 18 long 21613 non-null float64 19 sqft_living15 21613 non-null int64 20 sqft_lot15 21613 non-null int64 dtypes: float64(5), int64(15), object(1) ``` memory usage: 3.5+ MB What immediately stands out is that the date column does not seem to be a proper datetime object. So, let's fix that ``` df['date'] = pd.to_datetime(df['date']) ``` #### df.head().T | | 0 | 1 | 2 | 3 | |-----------------------------|---------------------|---------------------|---------------------|---------------------| | id | 7129300520 | 6414100192 | 5631500400 | 2487200875 | | date | 2014-10-13 00:00:00 | 2014-12-09 00:00:00 | 2015-02-25 00:00:00 | 2014-12-09 00:00:00 | | price | 221900.0 | 538000.0 | 180000.0 | 604000.0 | | bedrooms | 3 | 3 | 2 | 4 | | bathrooms | 1.0 | 2.25 | 1.0 | 3.0 | | $sqft_living$ | 1180 | 2570 | 770 | 1960 | | $sqft_lot$ | 5650 | 7242 | 10000 | 5000 | | floors | 1.0 | 2.0 | 1.0 | 1.0 | | waterfront | 0 | 0 | 0 | 0 | | view | 0 | 0 | 0 | 0 | | condition | 3 | 3 | 3 | 5 | | grade | 7 | 7 | 6 | 7 | | sqft above | 1180 | 2170 | 770 | 1050 | | $sqft_basement$ | 0 | 400 | 0 | 910 | | yr_built | 1955 | 1951 | 1933 | 1965 | | $yr_renovated$ | 0 | 1991 | 0 | 0 | | zipcode | 98178 | 98125 | 98028 | 98136 | | lat | 47.5112 | 47.721 | 47.7379 | 47.5208 | | long | -122.257 | -122.319 | -122.233 | -122.393 | | $sqft_living15$ | 1340 | 1690 | 2720 | 1360 | | $sqft_lot15$ | 5650 | 7639 | 8062 | 5000 | | | | | | | #### df.info() ``` <class 'pandas.core.frame.DataFrame'> RangeIndex: 21613 entries, 0 to 21612 Data columns (total 21 columns): ``` # Column Non-Null Count Dtype ``` 0 id 21613 non-null int64 21613 non-null datetime64[ns] 1 date 2 price 21613 non-null float64 3 bedrooms 21613 non-null int64 4 bathrooms 21613 non-null float64 5 sqft_living 21613 non-null int64 6 21613 non-null int64 sqft_lot 7 floors 21613 non-null float64 8 waterfront 21613 non-null int64 9 view 21613 non-null int64 10 condition 21613 non-null int64 grade 21613 non-null int64 11 12 sqft_above 21613 non-null int64 13 sqft_basement 21613 non-null int64 14 yr_built 21613 non-null int64 15 yr_renovated 21613 non-null int64 16 zipcode 21613 non-null int64 17 lat 21613 non-null float64 18 float64 long 21613 non-null 19 sqft_living15 21613 non-null int64 sqft_lot15 21613 non-null int64 dtypes: datetime64[ns](1), float64(5), int64(15) memory usage: 3.5 MB ``` Much better! Note how the variable type changed for date. On the topic of variable types, it seems surprising that bathrooms and floors are of type float64. Let's check if there is anything unusual about these variables #### df['bathrooms'].value_counts() ``` bathrooms 2.50 5380 1.00 3852 1.75 3048 2.25 2047 2.00 1930 1.50 1446 2.75 1185 3.00 753 3.50 731 3.25 589 3.75 155 4.00 136 4.50 100 4.25 79 0.75 72 4.75 23 ``` | 5.00 | 21 | |------|----| | 5.25 | 13 | | 0.00 | 10 | | 5.50 | 10 | | 1.25 | 9 | | 6.00 | 6 | | 0.50 | 4 | | 5.75 | 4 | | 6.75 | 2 | | 8.00 | 2 | | 6.25 | 2 | | 6.50 | 2 | | 7.50 | 1 | | 7.75 | 1 | | | | Name: count, dtype: int64 #### df['floors'].value_counts() # floors 1.0 10680 2.0 8241 1.5 1910 3.0 613 2.5 161 3.5 8 Name: count, dtype: int64 It seems that the number of bathrooms and floors is not always an integer. This is a bit surprising, but a possible interpretation is that in the case of bathrooms, smaller bathrooms with e.g., only a toilet and a sink are counted as 0.5 bathrooms, while a full bathroom would also need a shower or a bathtub. The same logic could apply to floors, where a split-level house could have, e.g., 1.5 floors. This is just a guess, but it seems plausible. Note also that there do not seem to be any missing values, at least none were encoded as such. Now, let's look at the summary statistics of the dataset #### df.describe().T | | count | mean | min | 25% | |-------------|---------|-------------------------------|---------------------|---------------------| | id | 21613.0 | 4580301520.864988 | 1000102.0 | 2123049194.0 | | date | 21613 | 2014-10-29 04:38:01.959931648 | 2014-05-02 00:00:00 | 2014-07-22 00:00:00 | | price | 21613.0 | 540088.141767 | 75000.0 | 321950.0 | | bedrooms | 21613.0 | 3.370842 | 0.0 | 3.0 | | bathrooms | 21613.0 | 2.114757 | 0.0 | 1.75 | | sqft_living | 21613.0 | 2079.899736 | 290.0 | 1427.0 | | saft lot | 21613.0 | 15106.967566 | 520.0 | 5040.0 | | | count | mean | min | 25% | 50% | |---------------|---------|--------------|----------|----------|---------| | floors | 21613.0 | 1.494309 | 1.0 | 1.0 | 1.5 | | waterfront | 21613.0 | 0.007542 | 0.0 | 0.0 | 0.0 | | view | 21613.0 | 0.234303 | 0.0 | 0.0 | 0.0 | | condition | 21613.0 | 3.40943 | 1.0 | 3.0 | 3.0 | | grade | 21613.0 | 7.656873 | 1.0 | 7.0 | 7.0 | | sqft_above | 21613.0 | 1788.390691 | 290.0 | 1190.0 | 1560.0 | | sqft_basement | 21613.0 | 291.509045 | 0.0 | 0.0 | 0.0 | | yr_built | 21613.0 | 1971.005136 | 1900.0 | 1951.0 | 1975.0 | | yr_renovated | 21613.0 | 84.402258 | 0.0 | 0.0 | 0.0 | | zipcode | 21613.0 | 98077.939805 | 98001.0 | 98033.0 | 98065.0 | | lat | 21613.0 | 47.560053 | 47.1559 | 47.471 | 47.5718 | | long | 21613.0 | -122.213896 | -122.519 | -122.328 | -122.23 | | sqft_living15 | 21613.0 | 1986.552492 | 399.0 | 1490.0 | 1840.0 | | sqft_lot15 | 21613.0 | 12768.455652 | 651.0 | 5100.0 | 7620.0 | Let's have a look at the pair plot of some of the quantitative variables Unsurprisingly, there seems to be a positive correlation between the square footage of the living area (or number of bedrooms, or number of bathrooms) and the price of a house. However, there does not seem to be such a relationship between the square footage of the lot and the price. This is more surprising given that land prices can be very high in some areas. However, if these "houses" include many apartments (that do not include the land they are built on), this could explain the lack of a relationship. There also seems to be one house with more than 30 bedrooms. This seems a bit unusual, so let's have a closer look #### df.query('bedrooms > 30').T | | 15870 | |----------|---------------------| | id | 2402100895 | | date | 2014-06-25 00:00:00 | | price | 640000.0 | | bedrooms | 33 | | | 15870 | |------------------|----------| | bathrooms | 1.75 | | sqft_living | 1620 | | $sqft_lot$ | 6000 | | floors | 1.0 | | waterfront | 0 | | view | 0 | | condition | 5 | | grade | 7 | | sqft_above | 1040 | | $sqft_basement$ | 580 | | yr_built | 1947 | | yr_renovated | 0 | | zipcode | 98103 | | lat | 47.6878 | | long | -122.331 | | sqft_living15 | 1330 | | sqft_lot15 | 4700 | What a bargain! A house with 33 bedrooms for only \$640000! However, it just has 1.75 bathrooms. It's maybe not that good of a deal after all. Considering that 1040 square feet corresponds to around 96 m 2 . This seems like an error in the data. We will remove this observation from the dataset ``` df = df.query('bedrooms < 30')</pre> ``` We could also look at the distribution of the number of bedrooms and floors and how if affects prices ``` sns.boxplot(x=df['bedrooms'],y=df['price']) ``` sns.boxplot(x=df['floors'],y=df['price']) There seems to be great variability in the prices for a given number of bedrooms or floors. Interestingly, we also have latitudinal and longitudinal information. We can use this to plot the houses on a map. Let's do that #### <folium.folium.Map at 0x7fe6686ea910> The 10 most expensive houses seem to be close to the waterfront and looking at the actual data, we can see that about half of them are indeed overlooking the waterfront ``` df_most_expensive_houses['waterfront'] 7252 0 3914 1 9254 0 4411 0 1448 0 1315 1164 1 8092 1 2626 1 8638 0 Name: waterfront, dtype: int64 ``` The heatmap also shows that the most expensive houses are located in the north-western part of the county, in or near Seattle. Finally, let's look at the distribution of some of the discrete variables in the dataset ``` fig, axes = plt.subplots(2, 2, figsize=(15, 10)) variables = ['waterfront', 'view', 'condition', 'grade'] for var, ax in zip(variables, axes.flatten()): sns.countplot(x=var, data=df, ax=ax) plt.tight_layout() ``` There seems to be some cyclicality in <code>yr_built</code>. We could probably infer housing booms and busts if we analyze it carefully.
<code>yr_renovated</code> seems to have a lot of zeros, which could mean that many houses have never been renovated. Let's check what's going on here df['yr_renovated'].value_counts() ``` yr_renovated 0 20698 2014 91 2013 37 2003 36 2005 35 1951 1 1959 1 1948 1 1954 1 1944 1 Name: count, Length: 70, dtype: int64 ``` Indeed, almost all of the houses seem to have a zero. However, some houses have values different from zero, so it might indeed be the case that houses with a value of zero have never been renovated. We could also check if the year of renovation is after the year the house was built ``` df.query('yr_renovated != 0 and yr_renovated < yr_built')</pre> ``` id date price bedrooms bathrooms sqft_living sqft_lot floors waterfront view ... grade so With this command, we selected all observations where yr_renovated is different from zero and yr_renovated < yr_built. Since there were no rows selected, there do not seem to be any errors in the dataset in this respect. Another thing we can check is whether there are errors in the square footage variables. For example, we could check if the sum of sqft_above and sqft_basement is equal to sqft_living ``` df.query('sqft_above + sqft_basement != sqft_living') ``` $id \quad date \quad price \quad bedrooms \quad bathrooms \quad sqft_living \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_living \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_living \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_living \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_living \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_lot \quad floors \quad waterfront \quad view \quad \dots \quad grade \quad sqft_lot \quad floors \quad yaterfront \quad$ This indeed seems to be correct for all observations. We haven't looked at the square footage of the 15 nearest neighbors yet. Let's check how it relates to price and the square footage of the house itself There seems to be a positive relationship between the square footage of the living area of the house and the square footage of the living area of the 15 nearest neighbors. There also seems to be a positive relationship with price. This likely just reflects the fact that neighborhoods tend to have houses of similar sizes and prices. Finally, let's look at the distribution of the zip codes in the dataset ``` plt.figure(figsize=(15, 5)) sns.countplot(x='zipcode', data=df) plt.xticks(rotation=90) plt.show() ``` This likely doesn't tell us much, but it's interesting to see that some zip codes are much more common than others. Finally, we can again look at the correlation between variables in our dataset ``` f, ax = plt.subplots(figsize=(16, 12)) corr = df.drop(['id', 'date'], axis=1).corr() cmap = sns.diverging_palette(10, 255, as_cmap=True) # Create a color map mask = np.triu(np.ones_like(corr, dtype=bool)) # Create a mask to only show the lower triangle of the matrix sns.heatmap(corr, cmap=cmap, annot=True, vmax=1, center=0, mask=mask) # Create a heatmap of the correlation matrix (Note: vmax=1 makes sure that the color map goes up to 1 and center=0 are used to center the color map at 0) plt.show() ``` # 7.6 Implementation of House Price Prediction Models We have explored our dataset and are now ready to implement machine learning algorithms for house price prediction. Let's start by importing the required libraries ``` from sklearn.preprocessing import MinMaxScaler, StandardScaler, OneHotEncoder from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, Lasso, LassoCV from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from xgboost import XGBRegressor from sklearn.neural_network import MLPRegressor from sklearn.model_selection import GridSearchCV from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score from joblib import dump, load ``` # 7.6.1 Data Preprocessing The dataset seems to be pretty clean already. Let's check again the number of missing values ``` df.isnull().sum() id 0 0 date price 0 0 bedrooms 0 bathrooms sqft_living 0 sqft_lot 0 floors 0 waterfront 0 0 view 0 condition grade 0 0 sqft_above sqft_basement 0 0 yr_built yr_renovated 0 zipcode 0 lat 0 0 long sqft_living15 0 0 sqft_lot15 dtype: int64 df.info() ``` ``` <class 'pandas.core.frame.DataFrame'> Index: 21612 entries, 0 to 21612 Data columns (total 21 columns): ``` | # | Column | Non-Null Count | Dtype | |---|-------------|----------------|----------------| | | | | | | 0 | id | 21612 non-null | int64 | | 1 | date | 21612 non-null | datetime64[ns] | | 2 | price | 21612 non-null | float64 | | 3 | bedrooms | 21612 non-null | int64 | | 4 | bathrooms | 21612 non-null | float64 | | 5 | sqft_living | 21612 non-null | int64 | | 6 | sqft_lot | 21612 non-null | int64 | | 7 | floors | 21612 non-null | float64 | | 8 | waterfront | 21612 non-null | int64 | | 9 | view | 21612 non-null | int64 | ``` 10 condition 21612 non-null int64 11 grade 21612 non-null int64 21612 non-null int64 12 sqft_above 13 sqft_basement 21612 non-null int64 21612 non-null int64 14 yr_built 15 yr_renovated 21612 non-null int64 16 zipcode 21612 non-null int64 21612 non-null float64 17 lat 21612 non-null float64 18 long 19 sqft_living15 21612 non-null int64 20 sqft_lot15 21612 non-null int64 dtypes: datetime64[ns](1), float64(5), int64(15) memory usage: 3.6 MB ``` There don't seem to be any missing values. However, we could still check for duplicates ``` df.duplicated().sum() ``` 0 There also don't seem to be any duplicates. There are some variables such as id, zipcode, lat and long which likely don't provide very useful information given the other variables in the dataset. We will drop these variables ``` df = df.drop(['id', 'zipcode', 'lat', 'long'], axis=1) df.head().T ``` | | 0 | 1 | 2 | 3 | |---------------|---------------------|---------------------|---------------------|--------------------| | date | 2014-10-13 00:00:00 | 2014-12-09 00:00:00 | 2015-02-25 00:00:00 | 2014-12-09 00:00:0 | | price | 221900.0 | 538000.0 | 180000.0 | 604000.0 | | bedrooms | 3 | 3 | 2 | 4 | | bathrooms | 1.0 | 2.25 | 1.0 | 3.0 | | sqft_living | 1180 | 2570 | 770 | 1960 | | $sqft_lot$ | 5650 | 7242 | 10000 | 5000 | | floors | 1.0 | 2.0 | 1.0 | 1.0 | | waterfront | 0 | 0 | 0 | 0 | | view | 0 | 0 | 0 | 0 | | condition | 3 | 3 | 3 | 5 | | grade | 7 | 7 | 6 | 7 | | sqft_above | 1180 | 2170 | 770 | 1050 | | sqft_basement | 0 | 400 | 0 | 910 | | yr_built | 1955 | 1951 | 1933 | 1965 | | yr_renovated | 0 | 1991 | 0 | 0 | | sqft living15 | 1340 | 1690 | 2720 | 1360 | | | 0 | 1 | 2 | 3 | 4 | |------------|------|------|------|------|------| | sqft_lot15 | 5650 | 7639 | 8062 | 5000 | 7503 | #### Binning & Encoding Furthermore, we will need to convert the date variable into something that can be used in a machine-learning model. We will extract the year and month from the date and drop the original date variable ``` df['year_sale'] = pd.DatetimeIndex(df['date']).year df['month_sale'] = pd.DatetimeIndex(df['date']).month ``` Furthermore, we can convert yr_built and yr_renovated into the age of the house and the number of years since the last renovation If the house has never been renovated, years_since_renovation will be equal to the age of the house. We can drop the original yr_built, yr_renovated, and date variables ``` df = df.drop(['yr_built', 'yr_renovated', 'date'], axis=1) ``` Let's check the summary statistics of the dataset again ``` df.describe().T ``` | count | moon | atd | min | 25.07 | 5007 | 75% | |---------|---|---
--|--|--|--| | count | шеап | sta | 111111 | 2070 | 9U70 | 1370 | | 21612.0 | 540083.518786 | 367135.061269 | 75000.0 | 321837.50 | 450000.00 | 645000.00 | | 21612.0 | 3.369471 | 0.907982 | 0.0 | 3.00 | 3.00 | 4.00 | | 21612.0 | 2.114774 | 0.770177 | 0.0 | 1.75 | 2.25 | 2.50 | | 21612.0 | 2079.921016 | 918.456818 | 290.0 | 1426.50 | 1910.00 | 2550.00 | | 21612.0 | 15107.388951 | 41421.423497 | 520.0 | 5040.00 | 7619.00 | 10688.25 | | 21612.0 | 1.494332 | 0.539991 | 1.0 | 1.00 | 1.50 | 2.00 | | 21612.0 | 0.007542 | 0.086519 | 0.0 | 0.00 | 0.00 | 0.00 | | 21612.0 | 0.234314 | 0.766334 | 0.0 | 0.00 | 0.00 | 0.00 | | 21612.0 | 3.409356 | 0.650668 | 1.0 | 3.00 | 3.00 | 4.00 | | 21612.0 | 7.656904 | 1.175477 | 1.0 | 7.00 | 7.00 | 8.00 | | 21612.0 | 1788.425319 | 828.094487 | 290.0 | 1190.00 | 1560.00 | 2210.00 | | 21612.0 | 291.495697 | 442.580931 | 0.0 | 0.00 | 0.00 | 560.00 | | 21612.0 | 1986.582871 | 685.392610 | 399.0 | 1490.00 | 1840.00 | 2360.00 | | 21612.0 | 12768.828984 | 27304.756179 | 651.0 | 5100.00 | 7620.00 | 10083.25 | | 21612.0 | 2014.322969 | 0.467622 | 2014.0 | 2014.00 | 2014.00 | 2015.00 | | | 21612.0
21612.0
21612.0
21612.0
21612.0
21612.0
21612.0
21612.0
21612.0
21612.0
21612.0
21612.0
21612.0 | 21612.0 540083.518786 21612.0 3.369471 21612.0 2.114774 21612.0 2079.921016 21612.0 15107.388951 21612.0 1.494332 21612.0 0.007542 21612.0 0.234314 21612.0 3.409356 21612.0 7.656904 21612.0 291.495697 21612.0 1986.582871 21612.0 12768.828984 | 21612.0 540083.518786 367135.061269 21612.0 3.369471 0.907982 21612.0 2.114774 0.770177 21612.0 2079.921016 918.456818 21612.0 15107.388951 41421.423497 21612.0 1.494332 0.539991 21612.0 0.007542 0.086519 21612.0 0.234314 0.766334 21612.0 3.409356 0.650668 21612.0 7.656904 1.175477 21612.0 1788.425319 828.094487 21612.0 291.495697 442.580931 21612.0 1986.582871 685.392610 21612.0 12768.828984 27304.756179 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | count | mean | std | min | 25% | 50% | |------------------------|---------|-----------|-----------|------|-------|-------| | month_sale | 21612.0 | 6.574449 | 3.115377 | 1.0 | 4.00 | 6.00 | | age | 21612.0 | 43.316722 | 29.375731 | -1.0 | 18.00 | 40.00 | | years_since_renovation | 21612.0 | 40.935730 | 28.813764 | -1.0 | 15.00 | 37.00 | Finally, we need to take care of the categorical variables in the dataset. We will use one-hot (aka 'one-of-K' or 'dummy') encoding for this purpose ``` # Define for which variables to do the one-hot encoding categorical_variables = ['view', 'condition', 'grade'] # Initialize the encoder encoder = OneHotEncoder(sparse_output=False) # Apply the one-hot encoding to the desired columns one_hot_encoded = encoder.fit_transform(df[categorical_variables]) # Convert the results to a DataFrame df_one_hot_encoded = pd.DataFrame(one_hot_encoded, columns=encoder.get_feature_names_out(['view', 'condition', # Concatenate the one-hot encoded columns with the original → DataFrame df_encoded = pd.concat([df, df_one_hot_encoded], axis=1) # Drop the old, unencoded columns from the old Dataframe df_encoded = df_encoded.drop(categorical_variables, axis=1) ``` You can see that now we have many more dummy variables taking values zero or one in our dataset #### df_encoded.describe().T | | count | mean | std | min | 25% | 50% | |----------------------------|---------|---------------|----------------------|---------|-----------|-----------| | price | 21612.0 | 540083.518786 | 367135.061269 | 75000.0 | 321837.50 | 450000.00 | | bedrooms | 21612.0 | 3.369471 | 0.907982 | 0.0 | 3.00 | 3.00 | | bathrooms | 21612.0 | 2.114774 | 0.770177 | 0.0 | 1.75 | 2.25 | | sqft_living | 21612.0 | 2079.921016 | 918.456818 | 290.0 | 1426.50 | 1910.00 | | $\operatorname{sqft_lot}$ | 21612.0 | 15107.388951 | 41421.423497 | 520.0 | 5040.00 | 7619.00 | | floors | 21612.0 | 1.494332 | 0.539991 | 1.0 | 1.00 | 1.50 | | waterfront | 21612.0 | 0.007542 | 0.086519 | 0.0 | 0.00 | 0.00 | | sqft_above | 21612.0 | 1788.425319 | 828.094487 | 290.0 | 1190.00 | 1560.00 | | | | | | | | | | | count | mean | std | min | 25% | 50% | 75% | |-----------------------------|---------|--------------|--------------|--------|---------|---------|----------| | sqft_basement | 21612.0 | 291.495697 | 442.580931 | 0.0 | 0.00 | 0.00 | 560.00 | | $sqft_living15$ | 21612.0 | 1986.582871 | 685.392610 | 399.0 | 1490.00 | 1840.00 | 2360.00 | | $sqft_lot15$ | 21612.0 | 12768.828984 | 27304.756179 | 651.0 | 5100.00 | 7620.00 | 10083.25 | | year_sale | 21612.0 | 2014.322969 | 0.467622 | 2014.0 | 2014.00 | 2014.00 | 2015.00 | | $month_sale$ | 21612.0 | 6.574449 | 3.115377 | 1.0 | 4.00 | 6.00 | 9.00 | | age | 21612.0 | 43.316722 | 29.375731 | -1.0 | 18.00 | 40.00 | 63.00 | | years_since_renovation | 21612.0 | 40.935730 | 28.813764 | -1.0 | 15.00 | 37.00 | 60.00 | | view_0 | 21612.0 | 0.901721 | 0.297698 | 0.0 | 1.00 | 1.00 | 1.00 | | view_1 | 21612.0 | 0.015362 | 0.122990 | 0.0 | 0.00 | 0.00 | 0.00 | | view_2 | 21612.0 | 0.044559 | 0.206337 | 0.0 | 0.00 | 0.00 | 0.00 | | view_3 | 21612.0 | 0.023598 | 0.151797 | 0.0 | 0.00 | 0.00 | 0.00 | | view_4 | 21612.0 | 0.014760 | 0.120595 | 0.0 | 0.00 | 0.00 | 0.00 | | condition_1 | 21612.0 | 0.001388 | 0.037232 | 0.0 | 0.00 | 0.00 | 0.00 | | $condition_2$ | 21612.0 | 0.007959 | 0.088857 | 0.0 | 0.00 | 0.00 | 0.00 | | condition_3 | 21612.0 | 0.649223 | 0.477224 | 0.0 | 0.00 | 1.00 | 1.00 | | condition_4 | 21612.0 | 0.262771 | 0.440149 | 0.0 | 0.00 | 0.00 | 1.00 | | $condition_5$ | 21612.0 | 0.078660 | 0.269214 | 0.0 | 0.00 | 0.00 | 0.00 | | $\operatorname{grade}_{-1}$ | 21612.0 | 0.000046 | 0.006802 | 0.0 | 0.00 | 0.00 | 0.00 | | grade_3 | 21612.0 | 0.000139 | 0.011781 | 0.0 | 0.00 | 0.00 | 0.00 | | $\operatorname{grade}_{-4}$ | 21612.0 | 0.001342 | 0.036607 | 0.0 | 0.00 | 0.00 | 0.00 | | $grade_5$ | 21612.0 | 0.011197 | 0.105226 | 0.0 | 0.00 | 0.00 | 0.00 | | $grade_6$ | 21612.0 | 0.094299 | 0.292252 | 0.0 | 0.00 | 0.00 | 0.00 | | $grade_7$ | 21612.0 | 0.415510 | 0.492821 | 0.0 | 0.00 | 0.00 | 1.00 | | $grade_8$ | 21612.0 | 0.280770 | 0.449386 | 0.0 | 0.00 | 0.00 | 1.00 | | $grade_9$ | 21612.0 | 0.120998 | 0.326132 | 0.0 | 0.00 | 0.00 | 0.00 | | $grade_10$ | 21612.0 | 0.052471 | 0.222980 | 0.0 | 0.00 | 0.00 | 0.00 | | $grade_11$ | 21612.0 | 0.018462 | 0.134618 | 0.0 | 0.00 | 0.00 | 0.00 | | $grade_12$ | 21612.0 | 0.004164 | 0.064399 | 0.0 | 0.00 | 0.00 | 0.00 | | $grade_13$ | 21612.0 | 0.000602 | 0.024519 | 0.0 | 0.00 | 0.00 | 0.00 | Given that these categorical variables are ordinal, this might have not been strictly necessary. However, is required if you have data that is not ordinal. #### Splitting the Data into Training and Test Sets Before we can train a machine learning model, we need to split our dataset into a training set and a test set. ``` X = df_encoded.drop('price', axis=1) # All variables except `SeriousDlqin2yrs` y = df_encoded[['price']] # Only SeriousDlqin2yrs ``` We will use 80% of the data for training and 20% for testing. Note that since our target variable is continuous, we don't need to stratify the split #### **Scaling Features** To improve the performance of our machine learning model, we should scale the features. We will use the StandardScaler and MinMaxScalerclass from the sklearn.preprocessing module to scale the features. The StandardScaler scales each feature to have a mean of 0 and a standard deviation of 1. The MinMaxScaler scales each feature to a given range, usually 0 to 1. ``` def scale_features(scaler, df, col_names, only_transform=False): # Extract the features we want to scale features = df[col names] # Fit the scaler to the features and transform them if only_transform: features = scaler.transform(features.values) else: features = scaler.fit_transform(features.values) # Replace the original features with the scaled features df[col_names] = features # Define which features to scale with the StandardScaler and → MinMaxScaler for_standard_scaler = ['bedrooms', 'bathrooms' 'sqft_living', 'sqft_lot', 'floors', 'sqft_above', 'sqft_basement', 'sqft_living15', 'sqft_lot15', 'age', 'years_since_renovation'] for_min_max_scaler = ['year sale', 'month sale' ``` ```] # Apply the standard scaler (Note: we use the same mean and std for scaling the test set) standard_scaler = StandardScaler() scale_features(standard_scaler, X_train, for_standard_scaler) scale_features(standard_scaler, X_test, for_standard_scaler, only_transform=True) # Apply the minmax scaler (Note: we use the same min and max for scaling the test set) minmax scaler = MinMaxScaler() scale_features(minmax_scaler, X_train, for_min_max_scaler) scale_features(minmax_scaler, X_test, for_min_max_scaler, → only transform=True) # Apply standard scaler to the target variable target_scaler = StandardScaler() y_train = pd.DataFrame(target_scaler.fit_transform(y_train), columns=['price']) y_test = pd.DataFrame(target_scaler.transform(y_test), columns=['price'])
``` #### 7.6.2 Evaluation Criertia We will evaluate our models based on the following criteria - Root Mean Squared Error (MSE): Square root of the mean of the squared differences between the predicted and the actual values - Mean Absolute Error (MAE): Mean of the absolute differences between the predicted and the actual values - R-squared (R2): Proportion of the variance in the dependent variable that is predictable from the independent variables We define a function that a function that will calculate these metrics for us ``` def evaluate_model(model, X_train, y_train, X_test, y_test, label='', print_results=True): # Predict the target variable y_pred_train = model.predict(X_train) y_pred_test = model.predict(X_test) # Transform the target variable back to the original scale # (This makes it easier to interpret the RMSE and MAE) y_train_inv = target_scaler.inverse_transform(y_train) ``` ``` y_test_inv = target_scaler.inverse_transform(y_test) y_pred_train_inv = target_scaler.inverse_transform(y_pred_train.reshape(-1, 1)) y_pred_test_inv = target_scaler.inverse_transform(y_pred_test.reshape(-1, 1)) # Calculate the evaluation metrics rmse_train = mean_squared_error(y_train_inv, y_pred_train_inv, squared=False) rmse_test = mean_squared_error(y_test_inv, y_pred_test_inv, squared=False) mae_train = mean_absolute_error(y_train_inv, y_pred_train_inv) mae_test = mean_absolute_error(y_test_inv, y_pred_test_inv) r2_train = r2_score(y_train_inv, y_pred_train_inv) r2_test = r2_score(y_test_inv, y_pred_test_inv) # Print the evaluation metrics if print_results: print(f"----- print(f"Metrics: {label}") print(f"----- print(f"RMSE (Train): {rmse_train}") print(f"MAE (Train): {mae_train}") print(f"R2 (Train): {r2_train}") print(f"----- print(f"RMSE (Test): {rmse test}") print(f"MAE (Test): {mae_test}") print(f"R2 (Test): {r2_test}") print(f"------ return rmse_train, rmse_test, mae_train, mae_test, r2_train, r2_test ``` #### 7.6.3 Linear Regression We will start by training a simple linear regression model using only a few basic features We can evaluate the model using the function we defined earlier ``` evaluate_model(reg_lin_basic, X_train[basic_features], y_train, X_test[basic_features], y_test, label = 'Linear Regression (Basic Features)'); ``` ``` _____ ``` Metrics: Linear Regression (Basic Features) ----- RMSE (Train): 253683.12629128053 MAE (Train): 168994.9071419931 R2 (Train): 0.5085183567620137 ______ RMSE (Test): 271925.6970016718 MAE (Test): 174452.3090166579 R2 (Test): 0.5073277848405491 ______ We are not doing that badly with a RMSE of around \$250000 if we take into account the minimum and maximum prices in the dataset Min Price: 75000.0, Max Price: 7700000.0 and the distribution of prices ``` ax = df['price'].plot.hist(bins=100) ax.ticklabel_format(useOffset=False,style='plain') ax.tick_params(axis='x', labelrotation=45) ax.set_xlim(0,3000000) ``` Let's now try a linear regression but with all the features ``` reg_lin = LinearRegression().fit(X_train, y_train) ``` We can evaluate the model using the function we defined earlier ``` evaluate_model(reg_lin, X_train, y_train, X_test, y_test, label = 'Linear Regression (All Features)'); ``` ------ Metrics: Linear Regression (All Features) _____ RMSE (Train): 203680.13271422562 MAE (Train): 133387.29115116654 R2 (Train): 0.6831735158523966 ----- RMSE (Test): 215930.28643225055 MAE (Test): 137547.23127374452 R2 (Test): 0.6893404625153258 _____ The performance of the model has improved. Since we have a large sample size but relatively few regressors it is unlikely to overfit. Note, however, that if we add more regressors, e.g., squared and cubed features, etc. we might run into trouble at a certain point. That's why it's important to use the train-test split to check that our model generalizes. #### 7.6.4 LASSO Regression One way to deal with overfitting in a linear regression is to use LASSO regression. LASSO regression is a type of linear regression that uses a penalty (or regularization) term to shrink the coefficients of the regressors towards zero. Essentially, LASSO selects a subset of features, which can help to prevent overfitting. We will use the Lasso class from the sklearn.linear_model module to train a LASSO regression model ``` reg_lasso = Lasso(alpha=0.1).fit(X_train, y_train) ``` We can evaluate the model using the function we defined earlier ``` evaluate_model(reg_lasso, X_train, y_train, X_test, y_test, label = 'LASSO Regression'); ``` ----- Metrics: LASSO Regression ----- RMSE (Train): 254661.31873140397 MAE (Train): 163764.59579244166 R2 (Train): 0.5047207803287292 _____ RMSE (Test): 273446.0239203981 MAE (Test): 168730.33198849438 R2 (Test): 0.5018033587261654 ______ This model is doing a bit worse than a standard linear regression. However, we just chose the value of the penalty term $\alpha$ arbitrarily. We can use cross-validation to find the best value of $\alpha$ ``` reg_lasso_cv = LassoCV(cv=5, random_state=42).fit(X_train, y_train.values.ravel()) ``` This command repeatedly runs 5-fold cross-validation for a LASSO regression using different values of $\alpha$ . The $\alpha$ that minimizes the mean squared error is then stored in the alpha_ attribute of the model ``` reg_lasso_cv.alpha_ ``` #### 0.0007018253833076978 This $\alpha$ is much smaller than our initial value. Let's see how well it does in terms of the RMSE ``` evaluate_model(reg_lasso_cv, X_train, y_train, X_test, y_test, abel = 'LASSO Regression (CV)'); ``` ______ Metrics: LASSO Regression (CV) ----- RMSE (Train): 204360.76389300276 MAE (Train): 134141.73731503487 R2 (Train): 0.6810525207180653 ----- RMSE (Test): 217146.28161042708 MAE (Test): 138085.31092628682 R2 (Test): 0.6858316989155063 ----- It's always a good idea to use cross-validation to find the best hyperparameters for your model. For more complicated models with several hyperparameter choices, one can use <code>GridSearchCV</code> or <code>RandomizedSearchCV</code> from <code>sklearn</code> to find the hyperparameters. We can check which coefficients the LASSO regression has shrunk to zero because of the regularization term ``` X_train.columns[np.abs(reg_lasso_cv.coef_) < 1e-12]</pre> ``` Compare this to the linear regression where none of the coefficients were zero ``` X_train.columns[(np.abs(reg_lin.coef_) < 1e-12).reshape(-1)]</pre> ``` Index([], dtype='object') #### 7.6.5 Decision Tree We will now train a decision tree regressor on the data We can evaluate the model using the function we defined earlier ______ Metrics: Decision Tree The decision tree perfectly fits the training data but does not generalize well to the test data. Why did this happen? We did not change any of the default hyperparameters of the decision tree which resulted in the decision tree overfitting, i.e., it learned the noise in the training data. We can try to reduce the depth of the tree to prevent overfitting ``` Metrics: Decision Tree RMSE (Train): 151229.68262754745 MAE (Train): 104245.46532488744 R2 (Train): 0.8253380836313531 RMSE (Test): 242624.93510350658 MAE (Test): 139455.8139319333 R2 (Test): 0.6077811751936795 ``` This seems to have improved the performance of the model. However, we need a more rigorous way to find the best hyperparameters. One such way is to use grid search, which tries many different hyperparameter values. We, then, combine this with cross-validation to find the best hyperparameters for the decision tree. GridSearchCV from the sklearn package does exactly that ``` param_grid = { 'max_depth': [5, 10, 15, 20], 'min_samples_split': [2, 5, 10, 15], 'min_samples_leaf': [1, 2, 5, 10] } reg_tree_cv = GridSearchCV(DecisionTreeRegressor(random_state=42), param_grid, cv=5).fit(X_train, y_train) ``` Note that param_grid is a dictionary where the keys are the hyperparameters of the decision tree and the values are lists of the values we want to try. The best hyperparameters are stored in the best_params_ attribute of the model ``` reg_tree_cv.best_params_ {'max_depth': 10, 'min_samples_leaf': 5, 'min_samples_split': 15} We can then evaluate the model using the best hyperparameters evaluate_model(reg_tree_cv, X_train, y_train, X_test, y_test, a label = 'Decision Tree (CV)'); Metrics: Decision Tree (CV) ``` ``` RMSE (Train): 165756.35013566245 ``` MAE (Train): 111454.50933401058 R2 (Train): 0.7901714932986897 ----- RMSE (Test): 233527.64612876996 MAE (Test): 137387.4802938534 R2 (Test): 0.6366424628160059 ----- Note that using reg_tree_cv as the model to be evaluated uses automatically the best estimator. Alternatively, we could also use best_estimator_attribute in evaluate model ``` reg_tree_cv.best_estimator_ ``` #### 7.6.6 Random Forest We will now train a random forest regressor on the data We can evaluate the model using the function we defined earlier ______ Metrics: Random Forest ----- RMSE (Train): 66638.2969151954 MAE (Train): 42418.54030134768 R2 (Train): 0.9660865542789411 _____ RMSE (Test): 207350.8910584885 MAE (Test): 120473.06515845477 R2 (Test): 0.713536442057418 _____ Let's use grid search with cross-validation to find the best hyperparameters for the random forest ``` param_grid = { 'max_depth': [5, 10, 15, 20], 'n_estimators': [50, 100, 150, 200, 300], } #reg_rf_cv = GridSearchCV(RandomForestRegressor(random_state=42), param_grid, cv=5).fit(X_train, y_train) #dump(reg_rf_cv, 'reg_rf_cv.joblib') ``` ``` reg_rf_cv = load('reg_rf_cv.joblib') ``` We are trying 20 different hyperparameter combinations and for each parameter combination we will have to estimate the model 5 times (5-fold cross-validation). This might take a while. The best hyperparameters are stored in the best_params_ attribute of the model ``` reg_rf_cv.best_params_ ``` ``` {'max_depth': 20, 'n_estimators': 300} ``` We can then evaluate the model using the best hyperparameters ----- Metrics: Random Forest (CV) _____ RMSE (Train): 72654.48965997726 MAE (Train): 49716.92916875867 R2 (Train): 0.959686634834322 ______ RMSE (Test): 206073.35722748775
MAE (Test): 120254.77646893183 R2 (Test): 0.7170554960056299 ----- The tuned random forest model performs a bit better than the one with the default values. However, the improvement is not that big. This is likely because the default values of the random forest are already quite good. We could try to test more hyperparameters in the grid search. Note that we chose the highest value for both parameters. Thus, we could try even higher values. However, this would increase the computational time. #### 7.6.7 XGBoost We will now train an XGBoost regressor on the data ``` reg_xgb = XGBRegressor(random_state=42).fit(X_train, y_train) ``` We can evaluate the model using the function we defined earlier ``` evaluate_model(reg_xgb, X_train, y_train, X_test, y_test, label = 'XGBoost'); ``` ----- ``` Metrics: XGBoost ``` ----- RMSE (Train): 101571.54001161143 MAE (Train): 76626.15270638122 R2 (Train): 0.9212105237017153 _____ RMSE (Test): 204360.86407090884 MAE (Test): 120757.43200613001 R2 (Test): 0.7217385587721041 ----- Let's use grid search with cross-validation to find the best hyperparameters for the XGBoost ``` param_grid = { 'max_depth': [5, 10, 15, 20], 'n_estimators': [50, 100, 150, 200, 300], } #reg_xgb_cv = GridSearchCV(XGBRegressor(random_state=42), param_grid, cv=5).fit(X_train, y_train) #dump(reg_xgb_cv, 'reg_xgb_cv.joblib') reg_xgb_cv = load('reg_xgb_cv.joblib') ``` The best hyperparameters are stored in the best_params_ attribute of the model ``` reg_xgb_cv.best_params_ {'max_depth': 5, 'n_estimators': 50} We can then evaluate the model using the best hyperparameters evaluate_model(reg_xgb_cv, X_train, y_train, X_test, y_test, label = 'XGBoost (CV)'); Metrics: XGBoost (CV) RMSE (Train): 134323.31888964228 MAE (Train): 99419.23493894239 R2 (Train): 0.862207059779255 RMSE (Test): 201839.3762899356 MAE (Test): 123656.21579704488 R2 (Test): 0.7285628038252234 Again, the tuned XGBoost model performs a bit better than the one with the default values. However, the improvement is not that big. 7.6.8 Neural Network Finally, let's try to train a neural network on the data #reg_nn = MLPRegressor(random_state=42, verbose=True).fit(X_train, y_train) #dump(reg_nn, 'reg_nn.joblib') reg_nn = load('reg_nn.joblib') We can evaluate the model using the function we defined earlier evaluate_model(reg_nn, X_train, y_train, X_test, y_test, label = 'Neural Network'); Metrics: Neural Network RMSE (Train): 142063.16391660276 MAE (Train): 101370.39765456515 R2 (Train): 0.8458700261274621 RMSE (Test): 201217.79803902542 MAE (Test): 125534.39997216879 ``` ``` R2 (Test): 0.7302320486389542 ``` We can try to improve the performance of the neural network by tuning the hyperparameters. We will use grid search with cross-validation to find the best hyperparameters for the neural network The best hyperparameters are stored in the best_params_ attribute of the model ``` reg_nn_cv.best_params_ ``` ``` {'alpha': 0.1, 'hidden_layer_sizes': (100,)} ``` We can then evaluate the model using the best hyperparameters Metrics: Neural Network RMSE (Train): 155891.59268622578 MAE (Train): 108538.19421278372 R2 (Train): 0.814403608721182 _____ RMSE (Test): 192879.83144507415 MAE (Test): 122558.79964553488 R2 (Test): 0.7521258686276469 ______ The tuned neural network model performs a bit better than the one with the default values. ### 7.7 Model Evaluation Let's summarize the results of our models ``` models = { "Linear Regression" : reg_lin, "LASSO Regression" : reg_lasso_cv, "Decision Tree" : reg_tree_cv, "Random Forest" : reg_rf_cv, "XGBoost" : reg_xgb_cv, "Neural Network" : reg_nn_cv results = pd.DataFrame(columns=['Model', 'RMSE Train', 'RMSE → Test', 'MAE Train', 'MAE Test', 'R2 Train', 'R2 Test']) for modelName in models: # Evaluate the current model rmse_train, rmse_test, mae_train, mae_test, r2_train, r2_test ¬ = evaluate_model(models[modelName], X_train, y_train, X_test, y_test, print_results=False) # Store the results res = { 'Model': modelName, 'RMSE Train': rmse_train, 'RMSE Test': rmse_test, 'MAE Train': mae_train, 'MAE Test': mae_test, 'R2 Train': r2_train, 'R2 Test': r2_test } df_tmp = pd.DataFrame(res, index=[0]) results = pd.concat([results, df_tmp], axis=0, ignore_index=True) # Sort the results by the RMSE of the test set results = results.sort_values(by='RMSE Good Test').reset_index(drop=True) results ``` | | Model | RMSE Train | RMSE Test | MAE Train | MAE Test | R2 Train | |---|-------------------|---------------|---------------|---------------|---------------|----------| | 0 | Neural Network | 155891.592686 | 192879.831445 | 108538.194213 | 122558.799646 | 0.814404 | | 1 | XGBoost | 134323.318890 | 201839.376290 | 99419.234939 | 123656.215797 | 0.862207 | | 2 | Random Forest | 72654.489660 | 206073.357227 | 49716.929169 | 120254.776469 | 0.959687 | | 3 | Linear Regression | 203680.132714 | 215930.286432 | 133387.291151 | 137547.231274 | 0.683174 | | 4 | LASSO Regression | 204360.763893 | 217146.281610 | 134141.737315 | 138085.310926 | 0.681053 | | 5 | Decision Tree | 165756.350136 | 233527.646129 | 111454.509334 | 137387.480294 | 0.790171 | # 7.8 Conclusion In this application, we have seen how to implement machine learning models for regression problems. We have used a dataset of house prices in King County, USA, to predict the price of a house based on a set of features. We have trained several models, including linear regression, LASSO regression, decision trees, random forests, XGBoost, and neural networks. We have used grid search with cross-validation to find the best hyperparameters for the models. We have evaluated the models based on the root mean squared error, mean absolute error, and R-squared. With a bit more careful hyperparameter tuning, we could likely improve the performance of the models even further and the ranking of the models might change. # References - Alonso Robisco, Andrés, and José Manuel Carbó Martínez. 2022. "Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction." Financial Innovation 8 (1). https://doi.org/10.1186/s40854-022-00366-1. - Aruoba, S. Boragan, and Thomas Drechsel. 2022. "Identifying Monetary Policy Shocks: A Natural Language Approach." CEPR Discussion Paper DP17133. CEPR. - Bank for International Settlements. 2021. "Machine learning applications in central banking." IFC Bulletin 57. https://www.bis.org/ifc/publ/ifcb57.pdf. - Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Edited by Michael Jordan, Jon Kleinberg, and Bernhard Schölkopf. Information Science and Statistics. Springer Science+Business Media, LLC. https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf. - Fernández-Villaverde, Jesús, Samuel Hurtado, and Galo Nuño. 2023. "Financial Frictions and the Wealth Distribution." *Econometrica* 91 (3): 869–901. ht tps://doi.org/10.3982/ecta18180. - Fernández-Villaverde, Jesús, Joël Marbet, Galo Nuño, and Omar Rachedi. 2024. "Inequality and the Zero Lower Bound." Working Paper 2407. Banco de España. - Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. *Deep Learning*. MIT Press. http://www.deeplearningbook.org. - Gorodnichenko, Yuriy, Tho Pham, and Oleksandr Talavera. 2023. "The Voice of Monetary Policy." *American Economic Review* 113 (2): 548–84. https://doi.org/10.1257/aer.20220129. - Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning Data Mining, Inference, and Prediction. Second Edition. Springer. - Kaji, Tetsuya, Elena Manresa, and Guillaume Pouliot. 2023. "An Adversarial Approach to Structural Estimation." *Econometrica* 91 (6): 2041–63. https://doi.org/10.3982/ecta18707. - Kase, Hanno, Leonardo Melosi, and Matthias Rottner. 2022. "Estimating Nonlinear Heterogeneous Agents Models with Neural Networks." Federal Reserve Bank of Chicago. https://doi.org/10.21033/wp-2022-26. 210 References Maliar, Lilia, Serguei Maliar, and Pablo Winant. 2021. "Deep learning for solving dynamic economic models." *Journal of Monetary Economics* 122 (September): 76–101. https://doi.org/10.1016/j.jmoneco.2021.07.004. - McCulloch, Warren S., and Walter Pitts. 1943. "A logical calculus of the ideas immanent in nervous activity." *The Bulletin of Mathematical Biophysics* 5 (4): 115–33. https://doi.org/10.1007/bf02478259. - McKinney, Wes. 2022. Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter. Third Edition. O'Reilly Media. https://wesmckinney.com/book/. - Microsoft. 2024. "Deep learning vs. machine learning in Azure Machine Learning." Website. https://learn.microsoft.com/en-us/azure/machine-learning/concept-deep-learning-vs-machine-learning?view=azureml-api-2. - Mitchell, Tom. 1997. *Machine Learning*. McGraw Hill. https://www.cs.cmu.edu/~tom/mlbook.html. - Murphy, Kevin P. 2012. *Machine Learning: A Probabilistic Perspective*. Cambridge: MIT Press. https://probml.github.io/pml-book/book0.html. - ——. 2022. Probabilistic Machine Learning: An Introduction. MIT Press. https://probml.github.io/pml-book/book1.html. - ——. 2023. Probabilistic Machine Learning: Advanced Topics. MIT Press. https://probml.github.io/pml-book/book2.html. - Nielsen, Michael. 2019. Neural Networks and Deep Learning. http://neuralnetworksanddeeplearning.com. - Rosenblatt, F. 1958. "The perceptron: A probabilistic model for information storage and organization in the brain." *Psychological Review* 65 (6): 386–408. https://doi.org/10.1037/h0042519. - Sutton, Richard S., and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction. Second Edition. MIT Press. http://incompleteideas.net/book/the-book-2nd.html. - Varian, Hal R. 2014. "Big Data: New Tricks for Econometrics." *Journal of Economic Perspectives* 28 (2): 3–28. https://doi.org/10.1257/jep.28.2.3.