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About this Course

This course serves as an introduction to machine learning techniques
used in data science. While we will cover some of the underlying theory to
get a better understanding of the methods we are going to use, the emphasis
will be on practical implementation. Throughout the course, we will be
using the programming language Python, which is the dominant programming
language in this field.

The course is divided into two parts. In the first part, we will get a brief overview
of the field, cover some basic concepts of machine learning and have a look at
some of the most commonly used methods. In the second part, we will apply
these methods to real-world problems, which hopefully will give you a starting
point for your own projects. The course outline is as follows:

Part I: Overview and Methods

1. Introduction to Machine Learning
2. Basic Concepts
3. Decision Trees
4. Neural Networks
5. Additional Methods

Part II: Applications

6. Loan Default Prediction
7. House Price Prediction

The course is designed to be self-contained, meaning that you do not need any
prior knowledge of machine learning to follow along.

Useful Resources
The course does not follow a particular textbook but has drawn material from
several sources such as

• Hastie, Tibshirani, and Friedman (2009), “The Elements of Statistical
Learning”

1



2 About this Course

• Murphy (2012), “Machine Learning: A Probabilistic Perspective”
• Murphy (2022), “Probabilistic Machine Learning: An Introduction”
• Murphy (2023), “Probabilistic Machine Learning: Advanced Topics”
• Goodfellow, Bengio, and Courville (2016), “Deep Learning”
• Bishop (2006), “Pattern Recognition And Machine Learning”
• Nielsen (2019), “Neural Networks and Deep Learning”
• Sutton and Barto (2018), “Reinforcement Learning: An Introduction”

Note that all of these books are officially available for free in the form of
PDFs or online versions (see the links in the references). However, you are not
required to read them and, as a word of warning, the books go much deeper
into the mathematical theory behind the machine learning techniques than we
will in this course. Nevertheless, you may find them useful if you want to learn
more about the subject.

Regarding programming in Python, McKinney (2022) “Python for Data
Analysis” might serve as a good reference book. The book is available for
free online and covers a lot of the material we will be using in this course. You
can find it here: Python for Data Analysis.

Software Installation Notes
We will be using Python for this course. For simplicity, we will be using the
Anaconda distribution, which is a popular distribution of Python (and R) that
aims to simplify the management of packages. We will also be using the Visual
Studio Code (VS Code) as our code editor.

Anaconda Installation
The first step is to install the Anaconda distribution:

1. Download the Anaconda distribution from anaconda.com. Note: If you are
using a M1 Mac (or newer), you have to choose the 64-Bit (M1) Graphical
Installer. With an older Intel Mac, you can choose the 64-Bit Graphical
Installer. With Windows, you can choose the 64-Bit Graphical Installer
(i.e., the only Windows option).

2. Open the installer that you have downloaded in the previous step and
follow the on-screen instructions.

3. If it asks you to update Anaconda Navigator at the end, you can click
Yes (to agree to the update), Yes (to quit Anaconda Navigator) and then
Update Now (to actually start the update).

To confirm that the installation was successful, you can open a terminal
window on macOS/Linux or an Anaconda Prompt if you are on Windows and
run the following command:

https://wesmckinney.com/book/
https://www.anaconda.com/download/success
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conda --version

This should display the version of Conda that you have installed. If you see an
error message, the installation was likely not successful and you should ask for
advice from your peers or send me an email.

Figure 1: Terminal Output after Anaconda Installation

Creating a Conda Environment
Next, we want to create a new environment for this course that contains the
correct Python version and all the Python packages we need. We can do this
by creating a new Conda environment from the environment.yml provided on
Moodle.

1. Open a terminal window on macOS/Linux or an Anaconda Prompt if you
are on Windows.

2. There are two ways to create the Conda environment:

Option A: Run the following command from the terminal or Anaconda
Prompt:

conda env create -f https://datascience.joelmarbet.com/environment.yml

This downloads the environment.yml file automatically and creates the
environment.

mailto:joel.marbet@bde.es
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Option B: Download the environment.yml file manually:

i. Navigate to the folder where you have downloaded the environment.yml
file. On macOS/Linux, you can do this by running the following
command in the terminal:

cd ~/Downloads

which will navigate to the Downloads folder in your home directory.

On Windows, you can do this by running the following command in
the Anaconda Prompt:

cd "%userprofile%/Downloads"

which will navigate to the Downloads folder in your user profile.

Note that if you use a different path that contains space you need to
put the path in quotes, e.g., cd "~/My Downloads".

ii. Create a new Conda environment from the environment.yml file by
running the following command in the terminal or Anaconda Prompt:

conda env create -f environment.yml

Either option will create a new Conda environment called datascience_course_cemfi
with the correct Python version and all the Python packages we need for
this course. Note that the installation might take a few minutes.

3. Activate the new Conda environment by running the following command
in the terminal or Anaconda Prompt:

conda activate datascience_course_cemfi

To confirm that the environment was created successfully, you can run
the following command in the terminal or Anaconda Prompt:

python --version

This should display Python version 3.8.8. If you see another Python version
you might have forgotten to activate the environment or the environment was
not created successfully.
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Figure 2: Terminal Output From Environment Creation

Resetting or Updating a Conda Environment

If you accidentally make changes to the environment and want to reset it
to the original state, you can do this by navigating to the folder where
you have downloaded environment.yml and then running the following
command in the terminal or Anaconda Prompt:
conda env update --file environment.yml --prune
Alternatively, you can also update the environment by running the follow-
ing command in the terminal or Anaconda Prompt, which downloads the
environment.yml file automatically from the course website:
conda env update --file https://datascience.joelmarbet.com/environment.yml --prune
This can also be used to update the environment if we add new packages
to the environment.yml file.

Installing VS Code
The last step is to install the Visual Studio Code (VS Code) editor:

1. Download the Visual Studio Code editor from code.visualstudio.com.

https://code.visualstudio.com/Download
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2. Open the installer that you have downloaded in the previous step and
follow the on-screen instructions.

We also need to install some VS Code extensions that will help us with Python
programming and Jupyter notebooks:

1. Open VS Code.

2. Click on the Extensions icon on the left sidebar (or press Cmd+Shift+X
on macOS or Ctrl+Shift+X on Windows).

Figure 3: Installing Extensions in VSCode

3. Search for Python and click on the Install button for the extension that
is provided by Microsoft.

4. Search for Jupyter and click on the Install button for the extension that
is provided by Microsoft.

Testing the Installation
To test the installation, you can download a Juypter notebook from Moodle and
open it in VS Code:
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1. Open the Jupyter notebook in VS Code.

2. Click on Select Kernel in the top right corner of the notebook and choose
the datascience_course_cemfi kernel.

Figure 4: VSCode Jupyter Kernel Selection

3. Run the first cell of the notebook by clicking on the Execute Cell button
next to the cell on the left.

If you see the output of the cell (or a green check mark below the cell), the
installation was successful.

Running Jupyter Notebooks in the Browser

If you have issues running Jupyter notebooks in VSCode, you can also
run them in the browser. To do this, you can open a terminal window
on macOS/Linux or an Anaconda Prompt if you are on Windows and run
the following command:
jupyter notebook
This will open a new tab in your default browser with the Jupyter note-
book interface. You can then navigate to the folder where you have down-
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loaded the course materials and open the notebooks from there.
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Chapter 1

Introduction

The hype around artificial intelligence (AI) reached new highs with the re-
lease of OpenAI’s ChatGPT in late 2022. These drastic improvements in arti-
ficial intelligence have been fueled by machine learning (ML) methods that
have become popular in recent years and have a wide variety of applications
such as, for example,

• Computer vision,
• Speech recognition,
• Data mining,

and many more. These tools also have many potential applications in eco-
nomics and finance and can be invaluable in extracting information from the
evergrowing amounts of data available. As current (or future) Banco de España
employees, you are in a unique position to work with large datasets that are
often not available to the general public. Therefore, you have a unique oppor-
tunity to apply these methods to a wide range of unexplored problems.

The field can be very technical, but barriers to entry are not as high as
they may seem. This course aims to provide you with the tools to apply
machine learning methods to problems in economics and finance.

1.1 Taking Advantage of Machine Learning in
Banking Supervision

You might have heard of some of the well-known advances in the field of AI
from recent years such as

• DeepMind’s AlphaGo can beat the best human Go players
• OpenAI’s ChatGPT responds to complex text prompts
• Midjourney, DALL-E, and Stable Diffusion generate images from text

11

https://deepmind.google/technologies/alphago/
https://openai.com/chatgpt
https://www.midjourney.com/
https://openai.com/dall-e-3
https://stability.ai/news/stable-diffusion-3
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Figure 1.1: Go board (Source: Wikimedia)

• …

While these examples are impressive, you might wonder how these methods can
help you in your work. There is a wide range of potential applications. Machine
learning methods have been used in practice to

• Predict loan or firm defaults,
• Detect fraud (e.g., credit card fraud, or money laundering),
• Interpret large quantities of data, or
• Forecast economic variables

to just name a few examples. Bank for International Settlements (2021) provides
an overview of how machine learning methods have been used at central banks.1
The report also notes how machine learning methods can be used in the context
of financial supervision

These techniques can support supervisors’ efficiency in: (i) cover-
ing traditional supervisory tasks (eg quality reporting, anomaly de-
tection, sending of instructions); (ii) facilitating the assessment of
micro-level fragilities; and (iii) identifying and tackling new emerg-
ing topics, such as climate-related financial risks, vulnerabilities from
the Covid-19 pandemic, or the consequence of increased digitisation
in finance (eg the development of fintechs).

To give you a few more ideas from academic research, machine learning tech-
niques have been used to, for example,

1See https://www.bis.org/ifc/publ/ifcb57.htm for a more detailed overview.

https://commons.wikimedia.org/wiki/File:FloorGoban.JPG
https://www.bis.org/ifc/publ/ifcb57.htm
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• Detect emotions in voices during press conferences after FOMC meetings
(Gorodnichenko, Pham, and Talavera 2023),

• Identify Monetary Policy Shocks using Natural Language Processing
(Aruoba and Drechsel 2022),

• Solve macroeconomic models with heterogeneous agents (Maliar, Maliar,
and Winant 2021; Fernández-Villaverde, Hurtado, and Nuño 2023;
Fernández-Villaverde et al. 2024; Kase, Melosi, and Rottner 2022), or

• Estimate structural models with the help of neural networks (Kaji, Man-
resa, and Pouliot 2023).

In this course, we will only be able to scratch the surface of the field. However,
I hope to provide you with the tools to get you started with machine learning
and to apply these methods to novel problems.

1.2 What Is Machine Learning?
You might already have some idea of what machine learning is. In this section,
we will provide a more formal definition, distinguish between machine learning,
artificial intelligence, and deep learning, and discuss the relation to statistics
and econometrics.

1.2.1 Definition
Let’s start with the straightforward definition provided by Murphy (2012)

[…] a set of methods that can automatically detect patterns in
data, and then use the uncovered patterns to predict future data,
or to perform other kinds of decision making under uncertainty
[…]

Therefore, machine learning provides a range of methods for data analysis. In
that sense, it is similar to statistics or econometrics.

A popular, albeit more technical, definition of ML is due to Mitchell (1997):

A computer program is said to learn from experience 𝐸 with respect
to some class of tasks 𝑇 , and performance measure 𝑃 , if its perfor-
mance at tasks in 𝑇 , as measured by 𝑃 , improves with experience
𝐸.

In the context of this course, experience 𝐸 is given by a dataset that we feed into
a machine-learning algorithm, tasks 𝑇 are usually some form of prediction that
we would like to perform (e.g., loan default prediction), and the performance
measure 𝑃 is the measure assessing the accuracy of our predictions.
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1.2.2 Common Terminology
Artificial intelligence (AI), machine learning (ML), and deep learning (DL) are
often used interchangeably in the media. However, they describe more narrow
subfields (Microsoft 2024):

Artificial Intelligence

Machine Learning

Deep Learning

Figure 1.2: Artificial intelligence vs. Machine Learning vs. Deep Learning

• Artificial Intelligence (AI): Any method allowing computers to imitate
human behavior.

• Machine Learning (ML): A subset of AI including methods that allow
machines to improve at tasks with experience.

• Deep Learning (DL): A subset of ML using neural networks with many
layers allowing machines to learn how to perform tasks.

More recently, with the rise of large language models (LLMs) such as Chat-
GPT, the term Generative AI has also become popular. Generative AI refers
to AI models that can generate new content, such as text, images, or music,
based on the patterns learned from their training data. ChatGPT is an exam-
ple of a generative AI model that generates human-like text responses based
on the input it receives. In this course, we will be more concerned with what
is sometimes called Predictive AI. Predictive AI refers to machine learning
models used to make predictions or classifications based on input data, such as
predicting loan defaults or classifying images.

A term you may also encounter is Artificial General Intelligence (AGI),
which refers to highly autonomous systems that possess the ability to under-
stand, learn, and apply knowledge across a wide range of tasks at a level compa-
rable to human intelligence. Unlike current AI systems, which are specialized for
specific tasks, AGI would be capable of general reasoning and problem-solving.
While AGI is a topic of significant research and debate, it remains largely the-
oretical at this stage.2 Please note that AGI and related concepts are beyond
the scope of this course and will not be covered.

2For more information, see, e.g., https://cloud.google.com/discover/what-is-artificial-
general-intelligence?hl=en.

https://cloud.google.com/discover/what-is-artificial-general-intelligence?hl=en
https://cloud.google.com/discover/what-is-artificial-general-intelligence?hl=en
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1.2.3 Relation to Statistics and Econometrics

We have already mentioned that machine learning is similar to statistics and
econometrics, in the sense that it provides a set of methods for data analysis.
The focus of machine learning is more on prediction rather than causality
meaning that in machine learning we are often interested in whether we can
predict A given B rather than whether B truly causes A. For example, we could
probably predict the sale of sunburn lotion on a day given the sales of ice cream
on the previous day. However, this does not mean that ice cream sales cause
sunburn lotion sales, it is just that the sunny weather on the first day causes
both.

Varian (2014) provides another example showing the difference between predic-
tion and causality:

A classic example: there are often more police in precincts with high
crime, but that does not imply that increasing the number of police
in a precinct would increase crime. […] If our data were generated by
policymakers who assigned police to areas with high crime, then the
observed relationship between police and crime rates could be highly
predictive for the historical data but not useful in predicting the
causal impact of explicitly assigning additional police to a precinct.

Nevertheless, leaving problems aside where we are interested in causality, there
is still a very large range of problems where we are interested in mere prediction,
such as loan default prediction, or credit card fraud detection.

1.3 Why Has Machine Learning Become Popu-
lar Only Recently?

Early contributions to the field reach back at least to McCulloch and Pitts (1943)
and Rosenblatt (1958). They attempted to find mathematical representations
of information processing in biological systems (Bishop 2006). The field has
grown substantially mainly in recent years due to

• Advances in computational power of personal computers
• Increased availability of large datasets → “big data”
• Improvements in algorithms

The need for large data sets still limits the applicability to certain fields. For
example, in macroeconomic forecasting, we usually only have quarterly data for
40-50 years. Conventional time series methods (e.g., ARIMA) often still tend
to perform better than ML methods (e.g., neural networks).
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1.4 Types of Learning
Machine learning methods are commonly distinguished based on the tasks
that we would like to perform, and the data that we have access to for
learning how to perform said task. For example, our task might be to figure
out whether a credit card transaction is fraudulent or not. Based on the data
we have access to, two different types of learning might be appropriate:

• We know which transactions are fraudulent meaning that we need to learn
a function that maps the transaction data (e.g., value of transaction, lo-
cation, etc.) to the label “fraudulent” or “not fraudulent”. This is an
example of supervised learning.

• We do not know whether they are fraudulent or not meaning that we might
want to find clusters in the data that group similar transactions. This is
an example of unsupervised learning.

More generally, ML methods are commonly categorized into

• Supervised Learning: Learn function 𝑦 = 𝑓(𝑥) from data that you
observe for 𝑥 and 𝑦

• Unsupervised Learning: “Make sense” of observed data 𝑥
• Reinforcement Learning: Learn how to interact with the environment

The focus of this course will be on supervised learning, but we will also have
a look at some unsupervised learning techniques if time allows. Let’s have a
closer look at the three types of learning.

Types of Learning in Practice

Machine learning models might combine different types of learning.
For example, ChatGPT is trained using a combination of self-supervised
(a form of unsupervised learning), supervised and reinforcement learning.
Furthermore, some machine learning methods, such as neural networks,
might be used as part of different types of learning.

1.4.1 Supervised Learning
Supervised learning is probably the most common form of machine learning.
In supervised learning, we have a training dataset consisting of input-output
pairs (𝑥𝑛, 𝑦𝑛) for 𝑛 = 1, … , 𝑁 . The goal is to learn a function 𝑓 that maps
inputs 𝑥 to outputs 𝑦.

The type of function 𝑓 might be incredibly complex, e.g.

• From images of cats and dogs 𝑥 to a classification of the image 𝑦 (→
Figure 1.3)

• From text input 𝑥 to some coherent text response 𝑦 (→ ChatGPT)
• From text input 𝑥 to a generated image 𝑦 (→ Midjourney)
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• From bank loan application form 𝑥 to a loan decision 𝑦
Regarding terminology, note that sometimes

• Inputs 𝑥 are called features, predictors, or covariates,
• Outputs 𝑦 are called labels, targets, or responses.

Based on the type of output, we can distinguish between

• Classification: Output 𝑦 is in a set of mutually exclusive labels (i.e.,
classes), i.e. 𝒴 = {1, 2, 3, … , 𝐶}

• Regression: Output 𝑦 is a real-valued quantity, i.e. 𝑦 ∈ ℝ
Let’s have a closer look at some examples of classification and regression tasks.

Classification

Training Data

...

Image Label

Dog

Cat

Algorithm after Training

New Image Prediction

Cat (2%)

Dog (98%)

Cat (17%)

Dog (83%)

Figure 1.3: Training a machine learning algorithm to classify images of cats and
dogs

Figure 1.3 shows an example of a binary classification task. The algorithm
is trained on a dataset of images of cats and dogs. The goal is to predict the
label (i.e., “cat” or “dog”) of a new image (new in the sense that the images
were not part of the training dataset). After training, the algorithm can predict
the label of new images with a certain degree of accuracy. However, if you
give the algorithm an image of, e.g., a horse it might mistakenly predict that
it is a dog because the algorithm has never seen an image like that before and
because it has been trained only for binary classification (it only knows two
kinds of classes, “cats” and “dogs”). In this example, 𝑥 would be an image in
the training dataset and 𝑦 would be the label of that image.

Extending the training dataset to also include images of horses with a corre-
sponding label would turn the tasks into multiclass classification.
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Regression
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Figure 1.4: Linear and Polynomial Regression

In regression tasks, the variable that we want to predict is continuous. Linear
and polynomial regression in Figure 1.4 are a form of supervised learning. Thus,
you are already familiar with some basic ML techniques from the statistics and
econometrics courses.

Another common way to solve regression tasks is to use neural networks,
which can learn highly non-linear relationships. In contrast to, for example,
polynomial regression, neural networks can learn these relationships without
the need to specify the functional form (i.e., whether it is quadratic as
in Figure 1.4) of the relationship. This makes them very flexible and powerful
tools. We will have a look at neural networks later on.

1.4.2 Unsupervised Learning
An issue with supervised learning is that we need labeled data which is often
not available. Unsupervised learning is used to explore data and to find
patterns that are not immediately obvious. For example, unsupervised learning
could be used to find groups of customers with similar purchasing behavior in a
dataset of customer transactions. Therefore, the task is to learn some structure
in the data 𝑥. Note that we only have features in the dataset and no labels, i.e.,
the training dataset consists of 𝑁 data points 𝑥𝑛.

Unsupervised learning tasks could be, for example,

• Finding clusters in the data, i.e. finding data points that are “similar”
(→ clustering)

• Finding latent factors that capture the “essence” of the data (→ dimen-
sionality reduction)

Let’s have a look at some examples of clustering and dimensionality reduction.
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Figure 1.5: Clusters in data on iris flowers (left-hand side: true classes, right-
hand side: k-means clusters)

Clustering

Clustering is a form of unsupervised learning where the goal is to group data
points into so-called clusters based on their similarity. We want to find clusters
in the data such that observations within a cluster are more similar to each
other than to observations in other clusters.

Figure 1.5 shows an example of a clustering task. The dataset consists of
measurements of sepal (and petal) length and width of three species of iris
flowers. The goal is to find clusters based on just the similarity in sepal and
petal lengths and widths without relying on information about the actual iris
flower species. The left-hand panel of Figure 1.5, shows the actual classification
of the iris flowers. The right-hand side shows the result of a k-means clustering
algorithm that groups the data points into three clusters.

Dimensionality Reduction

Suppose you observe data on house prices and many variables describing each
house. You might observe, e.g., property size, number of rooms, room sizes,
proximity to the closest supermarket, and hundreds of variables more. A ML
algorithm (e.g., principal component analysis or autoencoders) could find the
unobserved factors that determine house prices. These factors sometimes
(but not always) have an interpretation. For example, a factor driving house
prices could be amenities. This factor could summarize variables such as prox-
imity to the closest supermarket, number of nearby restaurants, etc. Ultimately,
hundreds of explanatory variables in the data set might be represented
by a small number of factors.

https://en.wikipedia.org/wiki/Iris_flower_data_set
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Figure 1.6: Petal vs Sepal (Source: Wikimedia)

1.4.3 Reinforcement Learning
In reinforcement learning, an agent learns how to interact with its environ-
ment. The agent receives feedback in the form of rewards or penalties for its
actions. The goal is to learn a policy that maximizes the total reward.

For example, a machine could learn to play chess using reinforcement learning

• Input 𝑥 would be the current position (i.e., the position of pieces on the
board)

• Action 𝑎 would be the next move to make given the position
• One also needs to define a reward (e.g., winning the game at the end)
• Goal is then to find 𝑎 = 𝜋(𝑥) to maximize the reward

This is also the principle behind AlphaGo that learned how to play Go.

Another example is MarI/O which learned how to play Super Mario World.
The algorithm learns to play the game by receiving feedback in the form of
rewards (e.g., points for collecting coins, penalties for dying) and then improves
in playing the game by “an advanced form of trial and error”.

In this course, we will focus on supervised learning. However, we will look at
some unsupervised learning techniques if time allows. Reinforcement learning
is going beyond the scope of this course and will not be covered.

https://commons.wikimedia.org/wiki/File:Petal-sepal.jpg
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Figure 1.7: MarI/O playing Super Mario World (Source: YouTube)

Mini-Exercise

Are the following tasks examples of supervised, unsupervised, or reinforce-
ment learning?

1. Predicting the price of a house based on its size and location (given
a dataset of house prices and features).

2. Finding groups of customers with similar purchasing behavior (given
a dataset of customer transactions and customer characteristics).

3. Detecting fraudulent credit card transactions (given a dataset of
unlabeled credit card transactions).

4. Detecting fraudulent credit card transactions (given a dataset of
labeled credit card transactions).

5. Recognizing handwritten digits in the MNIST dataset (see next sec-
tion).

6. Grouping news articles by topic based only on their content (without
knowing the topics in advance).

7. Predicting whether a customer will cancel their subscription next
month, given historical data on customer behavior and cancellations.

8. Classifying emails as spam or not spam, using a dataset where each
email is labeled as spam or not.

9. Training a robot to navigate a maze by receiving rewards for reaching
the exit and penalties for hitting walls.

https://www.youtube.com/watch?v=qv6UVOQ0F44
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1.5 Popular Practice Datasets
There are many publicly available datasets that you can use to learn how to
implement machine learning methods. Here are some well-known platforms
with a large collection of datasets

• Kaggle,
• HuggingFace, and
• OpenML.

Another good source for practice datasets is the collection of datasets provided
by scikit-learn. These datasets can be easily loaded into Python from the scikit-
learn package. Furthermore, Murphy (2022) provides an overview of some well-
known datasets that are often used in machine learning. For example, MNIST
is a dataset of handwritten digits (see Figure 1.8) that is often used to test
machine learning algorithms. The dataset consists of 60,000 training images
and 10,000 test images. Each image is a 28x28 pixel image of a handwritten
digit. The goal is to predict the digit in the image.

Figure 1.8: MNIST (Source: Wikimedia)

https://www.kaggle.com/datasets
https://huggingface.co/datasets
https://www.openml.org/search?type=data
https://scikit-learn.org/stable/datasets.html#datasets
https://commons.wikimedia.org/wiki/File:MnistExamplesModified.png


Chapter 2

Basic Concepts

Now that we have a basic understanding of what machine learning is, let’s dive
into some concepts that are essential for understanding machine learning mod-
els. The focus of this section will be on supervised learning models. We will
start with placing linear regression and logistic regression in a machine-learning
context. We will then discuss how to evaluate regression and classification mod-
els and introduce the concepts of generalization and overfitting. Finally, we will
implement some of these concepts in Python.

2.1 Linear Regression in a ML Context
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Figure 2.1: Linear Regression With a Single Feature 𝑥 (i.e., 𝑚 = 1) and Bias
𝑏 = 0 (Note that this Plot is interactive in the HTML version)

You have already extensively studied linear regressions in the statistics and
econometrics course, so we will not discuss it in much detail. In machine learning,
it is common to talk about weights 𝑤𝑖 and biases 𝑏𝑖 instead of coefficients 𝛽𝑖
and intercept 𝛽0, i.e., the linear regression model would be written as

23
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𝑦𝑛 = 𝑏 +
𝑚

∑
𝑖=1

𝑤𝑖𝑥𝑖,𝑛 + 𝜀𝑛 𝑛 = 1, … , 𝑁

where 𝑤𝑖 are the weights, 𝑏 is the bias and 𝑁 is the sample size. The weights
and biases are found by minimizing the empirical risk function or mean
squared error (MSE) loss, which is a measure of how well the model fits the
data.

MSE(𝑦, 𝑥; 𝑤, 𝑏) = 1
𝑁

𝑁
∑
𝑛=1

(𝑦𝑛 − ̂𝑦𝑛)2

where 𝑦𝑛 is the true value, ̂𝑦𝑛 is the predicted (or fitted) value for observation
𝑛.

In the case of linear regression, there is a closed-form solution for the weights
and biases that minimize the MSE. However, the weights and biases have
to be found numerically in many other machine learning models since
there is no closed-form solution. One can think of this, as the machine learning
algorithm automatically moving a slider for the slope Figure 2.1 until the loss
is minimized (i.e., the red dot is at the lowest possible point) and the model fits
the data as well as possible.

2.2 Logistic Regression in a ML Context
Logistic regression is a widely used classification model 𝑝(𝑦|𝑥; 𝑤, 𝑏) where
𝑥 ∈ ℝ𝑚 is an input vector, and 𝑦 ∈ {0, 1, … , 𝐶} is a class label. We will focus
on the binary case, meaning that 𝑦 ∈ {0, 1} but it is also possible to extend this
to more than two classes. The probability that 𝑦𝑛 is equal to 1 for observation
𝑛 is given by

𝑝(𝑦𝑛 = 1|𝑥𝑛; 𝑤, 𝑏) = 1
1 + exp(−𝑏 − ∑𝑚

𝑖=1 𝑤𝑖𝑥𝑖,𝑛)

where 𝑤 = [𝑤1, … , 𝑤𝑛]′ ∈ ℝ𝑚 is a weight vector, and 𝑏 is a bias term. Combining
the probabilities for each observation 𝑛, we can write the likelihood function
as

ℒ(𝑤, 𝑏) =
𝑁

∏
𝑛=1

𝑝(𝑦𝑛 = 1|𝑥𝑛; 𝑤, 𝑏)𝑦𝑛 (1 − 𝑝(𝑦𝑛 = 1|𝑥𝑛; 𝑤, 𝑏))1−𝑦𝑛

or taking the natural logarithm of the likelihood function, we get the log-
likelihood function



2.2. LOGISTIC REGRESSION IN A ML CONTEXT 25

log ℒ(𝑤, 𝑏) =
𝑁

∑
𝑛=1

𝑦𝑛 log 𝑝(𝑦𝑛 = 1|𝑥𝑛; 𝑤, 𝑏) + (1 − 𝑦𝑛) log (1 − 𝑝(𝑦𝑛 = 1|𝑥𝑛; 𝑤, 𝑏)) .

To find the weights and biases, we need to numerically maximize the
log-likelihood function (or minimize − log ℒ(𝑤, 𝑏)).
Adding a classification threshold 𝑡 to a logistic regression yields a decision
rule of the form

̂𝑦 = 1 ⇔ 𝑝(𝑦 = 1|𝑥; 𝑤, 𝑏) > 𝑡,

i.e., the model predicts that 𝑦 = 1 if 𝑝(𝑦 = 1|𝑥; 𝑤, 𝑏) > 𝑡.
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Figure 2.2: Logistic Regression With a Single Feature 𝑥 (i.e., 𝑚 = 1) and Bias
𝑏 = 0 (Note that this Plot is interactive in the HTML version)

Terminology: Regression vs. Classification

Do not get confused about the fact that it is called logistic regression but
is used for classification tasks. Logistic regression provides an estimate of
the probability that 𝑦 = 1 for given 𝑥, i.e., an estimate for 𝑝(𝑦 = 1|𝑥; 𝑤, 𝑏).
To turn, this into a classification model, we also need a classification
threshold value for 𝑝(𝑦 = 1|𝑥; 𝑤, 𝑏) above which we classify an observa-
tion as 𝑦 = 1.

Figure 2.2 shows an interactive example of a logistic regression model. The
left-hand side shows the data points and the regression line. The right-hand
side shows the log-likelihood function with the red dot showing the value of the
log-likelihood for the current value of 𝑤. The goal is to find the weight 𝑤 in the
regression line that maximizes the log-likelihood function (we assumed 𝑏 = 0 for
simplicity).
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If you enable the classification threshold 𝑡, a data point is shown as dark blue
if 𝑝(𝑦 = 1|𝑥; 𝑤, 𝑏) > 𝑡, otherwise, it is shown in light blue. Note how the
value of the threshold affects the classification of the data points for points in
the middle. Essentially, for each classification threshold, we have a different
classification model. But how do we choose the classification threshold? This is
a topic that we will discuss in the next section.

Logistic regression belongs to the class of generalized linear models with
logit as the link function. We could write

log ( 𝑝
1 − 𝑝) = 𝑏 +

𝑚
∑
𝑖=1

𝑤𝑖𝑥𝑖,𝑛

where 𝑝 = 𝑝(𝑦𝑛 = 1|𝑥𝑛; 𝑤, 𝑏), which separates the linear part on the right-hand
side from the logit on the left-hand side.
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Figure 2.3: Decision Boundary - Logistic Regression with Features 𝑥1 and 𝑥2
(i.e., 𝑚 = 2) (Note that this Plot is interactive in the HTML version)

This linearity also shows up in the linear decision boundary produced by
a logistic regression in Figure 2.3. A decision boundary shows how a machine-
learning model separates different classes in our data, i.e, how it would classify
an arbitrary combination of (𝑥1, 𝑥2). This linearity of the decision boundary
can pose a problem if the two classes are not linearly separable as in Figure 2.3.
We can remedy this issue by including higher order terms for 𝑥1 and 𝑥2 such as
𝑥2

2 or 𝑥3
1, which is a type of feature engineering. However, there are many
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forms of non-linearity that the decision boundary can have and we cannot try
all of them. You might know the following phrase from a Tolstoy book

“Happy families are all alike; every unhappy family is unhappy in its
own way.”

In the context of non-linear functions, people sometimes say

“Linear functions are all alike; every non-linear function is non-linear
in its own way.”

During the course, we will learn more advanced machine-learning techniques
that can produce non-linear decision boundaries without the need for feature
engineering.

2.3 Model Evaluation
Suppose our machine learning model has learned the weights and biases that
minimize the loss function. How do we know if the model is any good? In this
section, we will discuss how to evaluate regression and classification models.

2.3.1 Regression Models
In the case of regression models, we can use the mean squared error (MSE)
as a measure of how well the model fits the data. The MSE is defined as

MSE = 1
𝑁

𝑁
∑
𝑛=1

(𝑦𝑛 − ̂𝑦𝑛)2,

where 𝑦𝑛 is the true value, ̂𝑦𝑛 is the predicted value for observation 𝑛 and 𝑁 is
the sample size. A low MSE indicates a good fit, while a high MSE indicates a
poor fit. In the ideal case, the MSE is zero, meaning that the model perfectly
fits the data. Related to the MSE is the root mean squared error (RMSE),
which is the square root of the MSE

RMSE =
√

MSE.

The RMSE is in the same unit as the target variable 𝑦 and is easier to interpret
than the MSE.

Regression models are sometimes also evaluated based on the coefficient of
determination 𝑅2. The 𝑅2 is defined as

𝑅2 = 1 − ∑𝑁
𝑛=1(𝑦𝑛 − ̂𝑦𝑛)2

∑𝑁
𝑛=1(𝑦𝑛 − ̄𝑦)2

,
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where ̄𝑦 is the mean of the true values 𝑦𝑛. The 𝑅2 is a measure of how well
the model fits the data compared to a simple model that predicts the mean of
the true values for all observations. The 𝑅2 can take values between −∞ and 1.
A value of 1 indicates a perfect fit, while a value of 0 indicates that the model
does not perform better than the simple model that predicts the mean of the
true values for all observations. Note that the 𝑅2 is a normalized version of the
MSE

𝑅2 = 1 − 𝑁 × MSE
∑𝑁

𝑛=1(𝑦𝑛 − ̄𝑦)2
.

Thus, we would rank models based on the 𝑅2 in the same way as we would rank
them based on the MSE or the RMSE.

There are many more metrics but at this stage, we will only look at one more:
the mean-absolute-error (MAE). The MAE is defined as

MAE = 1
𝑁

𝑁
∑
𝑛=1

|𝑦𝑛 − ̂𝑦𝑛|.

The MAE is the average of the absolute differences between the true values and
the predicted values. Note that the MAE does not penalize large errors as much
as the MSE does.

2.3.2 Classification Models
In the case of classification models, we need different metrics to evaluate the
performance of the model. We will discuss some of the most common metrics
in the following subsections.

Basic Metrics

A key measure to evaluate a classification model, both binary and multiclass
classification, is to look at how often it predicts the correct class. This is called
the accuracy of a model

Accuracy = Number of correct predictions
Total number of predictions .

Related to this, one could also compute the misclassification rate

Missclassification Rate = Number of incorrect predictions
Total number of predictions .

While these measures are probably the most intuitive measures to assess the
performance of a classification model, they can be misleading in some cases.
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For example, if we have a dataset with 95% of the observations in class 1 and 5%
in class 0, a model that always predicts 𝑦 = 1 (class 1) would have an accuracy
of 95%. However, this model would not be very useful.

Confusion Matrices

In this and the following subsection, we focus on binary classification problems.

Let ̂𝑦 denote the predicted class and 𝑦 the true class. In a binary classification
problem, we can make two types of errors. First, we can make an error
because we predicted ̂𝑦 = 1 when 𝑦 = 0, which is called a false positive (or a
“false alarm”). Sometimes this is also called a type I error. Second, we can
make an error because we ̂𝑦 = 0 when 𝑦 = 1, which is called a false negative
(or a “missed detection”). Sometimes this is referred to as a type II error.

We can summarize the predictions of a classification model in a confusion
matrix as seen in Figure 2.4. The confusion matrix is a 2 × 2 matrix that
shows the number of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) of a binary classification model.
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Recall = TP
TP+FN .

Figure 2.4: Confusion matrix

There is a tradeoff between the two types of errors. For example, you could
get fewer false negatives by predicting ̂𝑦 = 1 more often, but this would increase
the number of false positives. In the extreme case, if you only predict ̂𝑦 = 1 for
all observations, you would have no false negatives at all. However, you would
also have no true negatives making the model of questionable usefulness.
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Confusion Matrix: Dependence on Classification Threshold 𝑡

The number of true positives, true negatives, false positives, and false
negatives in the confusion matrix depends on the classification threshold
𝑡.

Note that we can compute the accuracy measure as a function of true positives
(TP), true negatives (TN), false positives (FP) and false negatives (FN)

Accuracy = TP + TN
TP + TN + FP + FN ,

while the missclassification rate is given by

Missclassification Rate = FP + FN
TP + TN + FP + FN .

Another useful measure that can be derived from the confusion matrix is the
precision. It measures the fraction of positive predictions that were actually
correct, i.e.,

Precision = TP
TP + FP

The true positive rate (TPR) or recall or sensitivity measures the fraction
of actual positives that were correctly predicted, i.e.

Recall = TP
TP + FN .

Analogously, true negative rate (TNR) or specificity measures the fraction
of actual negatives that were correctly predicted, i.e.,

TNR = TN
FP + TN

Finally, the false positive rate (FPR) measures the fraction of actual nega-
tives that were incorrectly predicted to be positive, i.e.,

FPR = 1 − TNR = FP
FP + TN

Note that all of these measures can be computed for a given classification thresh-
old 𝑡. They capture different aspects of the quality of the predictions of a
classification model.
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Multiclass Classification

In the case of multiclass classification, the confusion matrix is a 𝐾 ×
𝐾 matrix, where 𝐾 is the number of classes. The diagonal elements of
the confusion matrix represent the number of correct predictions for each
class, while the off-diagonal elements represent the number of incorrect
predictions.
Note that we can binarize multiclass classification problems, which allows
us to use the same metrics as in binary classification. Two such binariza-
tion schemes are

• One-vs-Rest (or One-vs-All): In this scheme, we train 𝐾 binary
classifiers, one for each class to distinguish it from all other classes.
We can then use the class with the highest score as the predicted
class for a new observation.

• One-vs-One: In this scheme, we train 𝐾(𝐾−1)/2 binary classifiers,
one for each pair of classes. We can then use a majority vote to
determine the class of a new observation.

Receiver Operating Characteristic (ROC) Curves and Area Under
the Curve (AUC)

Figure 2.5 shows a Receiver Operating Characteristic (ROC) curve which
is a graphical representation of the tradeoff between the true positive rate (TPR)
and the false positive rate (FPR) for different classification thresholds. The
ROC curve is a useful tool to visualize the performance of a classification model.
The diagonal line in the ROC curve represents a random classifier. A classifier
that is better than random will have a ROC curve above the diagonal line. The
closer the ROC curve is to the top-left corner, the better the classifier.

The Area Under the Curve (AUC) of the ROC curve is a measure to
compare different classification models. The AUC is a value between 0 and 1,
where a value of 1 indicates a perfect classifier and a value of 0.5 indicates a
random classifier. Figure 2.6 shows the AUC of a classifier as the shaded area
under the ROC curve. Note that the AUC summarizes the ROC curve, which
itself represents the quality of predictions of our classification model at different
thresholds, in a single number.

2.4 Generalization and Overfitting
Typically, we are not just interested in having a good fit for the dataset on
which we are training a classification (or regression) model, after all, we already
have the actual classes or realization of predicted variables in our dataset. What
we are really interested in is that a classification or regression model
generalizes to new data.

However, since the models that we are using are highly flexible, it can be the case
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Figure 2.5: Receiver Operating Characteristic (ROC) Curve
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that we have a very high accuracy during the training of our model but it does
not provide good predictions when used on new data. This situation is called
overfitting: we have a very good fit in our training dataset, but predictions
for new data inputs are bad.
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Figure 2.7: Examples of Overfitting and Underfitting

Figure 2.7 provides examples of overfitting and underfitting. The blue dots
represent the training data 𝑥 and 𝑦, the orange curve represents the fit of the
model to the training data. The left plot shows an example of underfitting:
the model is too simple to capture the underlying structure of the data. The
middle plot shows a “good fit”: the model captures the underlying structure of
the data. The right plot shows an example of overfitting: the model is too
complex and captures the noise in the data.

2.4.1 Bias-Variance Tradeoff
The concepts of bias and variance are useful to understand the tradeoff be-
tween underfitting and overfitting. Suppose that data is generated from the
true model 𝑌 = 𝑓(𝑋) + 𝜖, where 𝜖 is a random error term such that 𝔼[𝜖] = 0
and Var[𝜖] = 𝜎2. Let ̂𝑓(𝑥) be the prediction of the model at 𝑥. One can show
that the expected prediction error (or generalization error) of a model can be
decomposed into three parts

EPE(𝑥0) = 𝔼[(𝑌 − ̂𝑓(𝑥0))2|𝑋 = 𝑥0] = Bias2( ̂𝑓(𝑥0)) + Var( ̂𝑓(𝑥0)) + 𝜎2,

where Bias( ̂𝑓(𝑥0)) = 𝔼[ ̂𝑓(𝑥0)]−𝑓(𝑥0) is the bias at 𝑥0, Var( ̂𝑓(𝑥0)) = 𝔼[ ̂𝑓(𝑥0)2]−
𝔼[ ̂𝑓(𝑥0)]2 is the variance at 𝑥0, and 𝜎2 is the irreducible error, i.e., the error
that cannot be reduced by any model. As model complexity increases, the bias
tends to decrease, but the variance tends to increase. The following quote from
Cornell lecture notes summarizes the bias-variance tradeoff well:

Variance: Captures how much your classifier changes if you train on
a different training set. How “over-specialized” is your classifier to
a particular training set (overfitting)? If we have the best possible

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html
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model for our training data, how far off are we from the average
classifier?

Bias: What is the inherent error that you obtain from your classifier
even with infinite training data? This is due to your classifier being
“biased” to a particular kind of solution (e.g. linear classifier). In
other words, bias is inherent to your model.

Noise: How big is the data-intrinsic noise? This error measures
ambiguity due to your data distribution and feature representation.
You can never beat this, it is an aspect of the data.
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Figure 2.8: Model Complexity and Generalization Error (adapted from Hastie,
Tibshirani, and Friedman 2009)

Figure 2.8 shows the relationship between the model complexity and the predic-
tion error. A more complex model can reduce the prediction error only up to a
certain point. After this point, the model starts to overfit the training data (it
learns noise in the data), and the prediction error for the test data (i.e., data
not used for model training) increases. Ideally, we would like to find the model
complexity that minimizes the prediction error for the test data.

2.4.2 Regularization
One approach to avoid overfitting is to use regularization. Regularization
adds a penalty term to the loss function that penalizes large weights. The most
common regularization techniques are L1 regularization and L2 regulariza-
tion. L1 regularization adds the sum of the absolute values of the weights to
the loss function, while L2 regularization adds the sum of the squared weights
to the loss function.

These techniques are applicable across a large range of ML models and depend-
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ing on the type of model additional regularization techniques might be available.
For example, in neural networks, dropout regularization is a common reg-
ularization technique that randomly removes a set of artificial neurons during
training.

In the context of linear regressions, L1 regularization is also called LASSO
regression. The loss function of LASSO regression is given by

Loss = MSE(𝑦, 𝑥; 𝑤) + 𝜆
𝑚

∑
𝑖=1

|𝑤𝑖|,

where MSE(𝑦, 𝑥; 𝑤) refers to the mean squared error (the standard loss function
of a linear regression), 𝜆 is a hyperparameter that controls the strength of
the regularization. Note that LASSO regression can also be used for feature
selection, as it tends to set the weights of irrelevant features to zero. Figure 2.9
shows the LASSO regression loss for different levels of 𝜆.
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Figure 2.9: LASSO Regression Loss for Different Levels of 𝜆

An L2 regularization in a linear regression context is called a Ridge regression.
Its loss function is given by

Loss = MSE(𝑦, 𝑥; 𝑤) + 𝜆
𝑚

∑
𝑖=1

𝑤2
𝑖 .

We will have a closer look at regularization in the application sections. For now,
it is important to understand that regularization works by constraining the
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weights of the model (i.e., keeping the weights small), which can help to avoid
overfitting (which might require some weights to be very large). Figure 2.10
shows the Ridge regression loss for different levels of 𝜆. Note how the Ridge
regression loss is smoother than the LASSO regression loss and that the weights
are never set to exactly zero but just get closer and closer to zero.
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Figure 2.10: Ridge Regression Loss for Different Levels of 𝜆

2.4.3 Training, Validation, and Test Datasets
Regularization discussed in the previous section is a method to directly prevent
overfitting. However, another approach to the issues is to adjust our evalu-
ation procedure in a way that allows us to detect overfitting. To do this, we
can split the dataset into several parts. The first option shown in Figure 2.11 is
to split the dataset into a training dataset and a test dataset. The training
dataset is used to train the model, while the test dataset is used to evaluate the
model. Why does this help to detect overfitting? If the model performs well on
the training dataset but poorly on the test dataset, this is a sign of overfitting.
If the model performs well on the test dataset, this is a sign that the model
generalizes well to new data.

Difference with Terminology in Econometrics/Statistics

In econometrics/statistics, it is more common to talk about in-sample
and out-of-sample performance. The idea is the same: the in-sample
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performance is the performance of the model on the training dataset, while
the out-of-sample performance is the performance of the model on the test
dataset.

Training Test

Figure 2.11: Option A - Splitting the Whole Dataset into Training, and Test
Datasets

The second option shown in Figure 2.12 is to split the dataset into a training
dataset, a validation dataset, and a test dataset. The training dataset is
used to train the model, the validation dataset is used to tune the hyperparam-
eters of the model, and the test dataset is used to evaluate the model.

Training Validation Test

Figure 2.12: Option B - Splitting the Whole Dataset into Training, Test, and
Validation Datasets

Common splits are 75% training and 30% test, or 80% training and 20% test
in Option A. In Option B, a common split is 70% training, 15% validation, and
15% test.

2.4.4 Cross-Validation
Another approach to detect overfitting is to use cross-validation. There are
different types of cross-validation but k-fold cross-validation is probably the
most common. In k-fold cross-validation, shown in Figure 2.13, the dataset
is split into 𝑘 parts (called folds). The model is trained on 𝑘 − 1 folds and
evaluated on the remaining fold. This process is repeated 𝑘 times, each time
using a different fold as the test fold. The performance of the model is then
averaged over the 𝑘 iterations. In practice, 𝑘 = 10 is a common choice. If we
set 𝑘 = 𝑁 , where 𝑁 is the number of observations in the dataset, we call this
leave-one-out cross-validation or LOOCV.

The advantage of cross-validation is that it allows us to use all the data for train-
ing and testing. The disadvantage is that it is computationally more expensive
than a simple training-test split.
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Figure 2.13: 5-Fold Cross-Validation

Mini-Exercise

Implement a 5-fold cross-validation for the logistic regression model in
the Python example below. Use the cross_val_score function from the
sklearn.model_selection module.
# Import the cross_val_score function
from sklearn.model_selection import cross_val_score

# Apply 5-fold cross-validation to the classifier clf
cv_scores = cross_val_score(clf, X, y, cv=5,

scoring='roc_auc')↪

# Mean of the cross-validation scores
cv_scores.mean()

2.5 Python Implementation
Let’s have a look at how to implement a logistic regression model in Python.
First, we need to import the required packages
import pandas as pd
import numpy as np
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import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score,

roc_auc_score, recall_score, precision_score, roc_curve↪

pd.set_option('display.max_columns', 50) # Display up to 50
columns↪

Let’s download the dataset automatically, unzip it, and place it in a folder called
data if you haven’t done so already
from io import BytesIO
from urllib.request import urlopen
from zipfile import ZipFile
import os.path

# Check if the file exists
if not os.path.isfile('data/card_transdata.csv'):

print('Downloading dataset...')

# Define the dataset to be downloaded
zipurl = 'https://www.kaggle.com/api/v1/datasets/download/dh ⌋
anushnarayananr/credit-card-fraud'↪

# Download and unzip the dataset in the data folder
with urlopen(zipurl) as zipresp:

with ZipFile(BytesIO(zipresp.read())) as zfile:
zfile.extractall('data')

print('DONE!')

else:

print('Dataset already downloaded!')

Downloading dataset...
DONE!

Then, we can load the data into a DataFrame using the read_csv function from
the pandas library
df = pd.read_csv('data/card_transdata.csv')

Note that it is common to call this variable df which is short for DataFrame.
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This is a dataset of credit card transactions from Kaggle.com. The target
variable 𝑦 is fraud, which indicates whether the transaction is fraudulent or not.
The other variables are the features 𝑥 of the transactions.

2.5.1 Data Exploration & Preprocessing
The first step whenever you load a new dataset is to familiarize yourself with it.
You need to understand what the variables represent, what the target variable
is, and what the data looks like. This is called data exploration. Depending
on the dataset, you might need to preprocess it (e.g., check for missing values
and duplicates, or create new variables) before you can use it to train a machine-
learning model. This is called data preprocessing.

Basic Dataframe Operations

Let’s see how many rows and columns the dataset has
df.shape

(1000000, 8)

The dataset has 1 million rows (observations) and 8 columns (variables)! Now,
let’s have a look at the first few rows of the dataset with the head() method
df.head().T

0 1 2 3 4
distance_from_home 57.877857 10.829943 5.091079 2.247564 44.190936
distance_from_last_transaction 0.311140 0.175592 0.805153 5.600044 0.566486
ratio_to_median_purchase_price 1.945940 1.294219 0.427715 0.362663 2.222767
repeat_retailer 1.000000 1.000000 1.000000 1.000000 1.000000
used_chip 1.000000 0.000000 0.000000 1.000000 1.000000
used_pin_number 0.000000 0.000000 0.000000 0.000000 0.000000
online_order 0.000000 0.000000 1.000000 1.000000 1.000000
fraud 0.000000 0.000000 0.000000 0.000000 0.000000

If you would like to see more entries in the dataset, you can use the head()
method with an argument corresponding to the number of rows, e.g.,
df.head(20)

distance_from_home distance_from_last_transaction ratio_to_median_purchase_price repeat_retailer used_chip used_pin_number online_order fraud
0 57.877857 0.311140 1.945940 1.0 1.0 0.0 0.0 0.0
1 10.829943 0.175592 1.294219 1.0 0.0 0.0 0.0 0.0
2 5.091079 0.805153 0.427715 1.0 0.0 0.0 1.0 0.0

https://www.kaggle.com/datasets/dhanushnarayananr/credit-card-fraud/data
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distance_from_home distance_from_last_transaction ratio_to_median_purchase_price repeat_retailer used_chip used_pin_number online_order fraud
3 2.247564 5.600044 0.362663 1.0 1.0 0.0 1.0 0.0
4 44.190936 0.566486 2.222767 1.0 1.0 0.0 1.0 0.0
5 5.586408 13.261073 0.064768 1.0 0.0 0.0 0.0 0.0
6 3.724019 0.956838 0.278465 1.0 0.0 0.0 1.0 0.0
7 4.848247 0.320735 1.273050 1.0 0.0 1.0 0.0 0.0
8 0.876632 2.503609 1.516999 0.0 0.0 0.0 0.0 0.0
9 8.839047 2.970512 2.361683 1.0 0.0 0.0 1.0 0.0
10 14.263530 0.158758 1.136102 1.0 1.0 0.0 1.0 0.0
11 13.592368 0.240540 1.370330 1.0 1.0 0.0 1.0 0.0
12 765.282559 0.371562 0.551245 1.0 1.0 0.0 0.0 0.0
13 2.131956 56.372401 6.358667 1.0 0.0 0.0 1.0 1.0
14 13.955972 0.271522 2.798901 1.0 0.0 0.0 1.0 0.0
15 179.665148 0.120920 0.535640 1.0 1.0 1.0 1.0 0.0
16 114.519789 0.707003 0.516990 1.0 0.0 0.0 0.0 0.0
17 3.589649 6.247458 1.846451 1.0 0.0 0.0 0.0 0.0
18 11.085152 34.661351 2.530758 1.0 0.0 0.0 1.0 0.0
19 6.194671 1.142014 0.307217 1.0 0.0 0.0 0.0 0.0

Note that analogously you can also use the tail() method to see the last few
rows of the dataset.

We can also check what the variables in our dataset are called
df.columns

Index(['distance_from_home', 'distance_from_last_transaction',
'ratio_to_median_purchase_price', 'repeat_retailer', 'used_chip',
'used_pin_number', 'online_order', 'fraud'],
dtype='object')

and the data types of the variables
df.dtypes

distance_from_home float64
distance_from_last_transaction float64
ratio_to_median_purchase_price float64
repeat_retailer float64
used_chip float64
used_pin_number float64
online_order float64
fraud float64
dtype: object

In this case, all our variables are floating-point numbers (float). This means
that they are numbers that have a fractional part such as 1.5, 3.14, etc. The
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number after float, 64 in this case refers to the number of bits that are used
to represent this number in the computer’s memory. With 64 bits you can store
more decimals than you could with, for example, 32, meaning that the results
of computations can be more precise. But for the topics discussed in this course,
this is not very important. Other common data types that you might encounter
are integers (int) such as 1, 3, 5, etc., or strings (str) such as 'hello', 'world',
etc.

Let’s dig deeper into the dataset and see some summary statistics
df.describe().T

count mean std min 25% 50% 75% max
distance_from_home 1000000.0 26.628792 65.390784 0.004874 3.878008 9.967760 25.743985 10632.723672
distance_from_last_transaction 1000000.0 5.036519 25.843093 0.000118 0.296671 0.998650 3.355748 11851.104565
ratio_to_median_purchase_price 1000000.0 1.824182 2.799589 0.004399 0.475673 0.997717 2.096370 267.802942
repeat_retailer 1000000.0 0.881536 0.323157 0.000000 1.000000 1.000000 1.000000 1.000000
used_chip 1000000.0 0.350399 0.477095 0.000000 0.000000 0.000000 1.000000 1.000000
used_pin_number 1000000.0 0.100608 0.300809 0.000000 0.000000 0.000000 0.000000 1.000000
online_order 1000000.0 0.650552 0.476796 0.000000 0.000000 1.000000 1.000000 1.000000
fraud 1000000.0 0.087403 0.282425 0.000000 0.000000 0.000000 0.000000 1.000000

With the describe() method we can see the count, mean, standard deviation,
minimum, 25th percentile, median, 75th percentile, and maximum values of
each variable in the dataset.

Checking for Missing Values and Duplicated Rows

It is also important to check for missing values and duplicated rows in the
dataset. Missing values can be problematic for machine learning models, as they
might not be able to handle them. Duplicated rows can also be problematic, as
they might introduce bias in the model.

We can check for missing values (NA) that are encoded as None or numpy.NaN
(Not a Number) with the isna() method. This method returns a boolean
DataFrame (i.e., a DataFrame with True and False values) with the same
shape as the original DataFrame, where True values indicate missing values.
df.isna()

distance_from_home distance_from_last_transaction ratio_to_median_purchase_price repeat_retailer used_chip used_pin_number online_order fraud
0 False False False False False False False False
1 False False False False False False False False
2 False False False False False False False False
3 False False False False False False False False
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distance_from_home distance_from_last_transaction ratio_to_median_purchase_price repeat_retailer used_chip used_pin_number online_order fraud
4 False False False False False False False False
... ... ... ... ... ... ... ... ...
999995 False False False False False False False False
999996 False False False False False False False False
999997 False False False False False False False False
999998 False False False False False False False False
999999 False False False False False False False False

or to make it easier to see, we can sum the number of missing values for each
variable
df.isna().sum()

distance_from_home 0
distance_from_last_transaction 0
ratio_to_median_purchase_price 0
repeat_retailer 0
used_chip 0
used_pin_number 0
online_order 0
fraud 0
dtype: int64

Luckily, there seem to be no missing values. However, you need to be careful!
Sometimes missing values are encoded as empty strings '' or numpy.inf (in-
finity), which are not considered missing values by the isna() method. If you
suspect that this might be the case, you need to make additional checks.

As an alternative, we could also look at the info() method, which provides a
summary of the DataFrame, including the number of non-null values in each
column. If there are missing values, the number of non-null values will be less
than the number of rows in the dataset.
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 8 columns):
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 distance_from_home 1000000 non-null float64
1 distance_from_last_transaction 1000000 non-null float64
2 ratio_to_median_purchase_price 1000000 non-null float64
3 repeat_retailer 1000000 non-null float64
4 used_chip 1000000 non-null float64
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5 used_pin_number 1000000 non-null float64
6 online_order 1000000 non-null float64
7 fraud 1000000 non-null float64

dtypes: float64(8)
memory usage: 61.0 MB

We can also check for duplicated rows with the duplicated() method.
df.loc[df.duplicated()]

distance_from_home distance_from_last_transaction ratio_to_median_purchase_price repeat_retailer used_chip used_pin_number online_order fraud

Luckily, there are also no duplicated rows.

Data Visualization

Let’s continue with some data visualization. We can use the matplotlib library
to create plots. We have already imported the library at the beginning of the
notebook.

Let’s start by plotting the distribution of the target variable fraud which can
only take values zero and one. We can type
df['fraud'].value_counts()

fraud
0.0 912597
1.0 87403
Name: count, dtype: int64

to get the count of each value. We can also use the normalize=True argument
to get the fraction of observations instead of the count
df['fraud'].value_counts(normalize=True)

fraud
0.0 0.912597
1.0 0.087403
Name: proportion, dtype: float64

We can then plot it as follows
df['fraud'].value_counts(normalize=True).plot(kind='bar')
plt.xlabel('Fraud')
plt.ylabel('Fraction of Observations')
plt.title('Distribution of Fraud')
ax = plt.gca()
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ax.set_ylim([0.0, 1.0])
plt.show()

Alternatively, we can plot it as a pie chart
df.value_counts("fraud").plot.pie(autopct = "%.1f")
plt.ylabel('')
plt.show()
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Our dataset seems to be quite imbalanced, as only 8.7% of the transactions are
fraudulent. This is a common problem in fraud detection datasets, as fraudulent
transactions are usually very rare. We will need to keep this in mind when
evaluating our machine learning model: the accuracy measure will be very high
even for bad models, as the model can just predict that all transactions are not
fraudulent and still get an accuracy of 91.3%.

Let’s look at some distributions. Most of the variables in the dataset are binary
(0 or 1) variables. However, we also have some continuous variables. Let’s plot
the distribution of the variable ratio_to_median_purchase_price, which is a
continuous variable.
df['ratio_to_median_purchase_price'].hist(bins = 50, range=[0,

30])↪

plt.xlabel('Ratio to Median Purchase Price')
plt.ylabel('Count')
plt.show()
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We can also plot the distribution of the variable ratio_to_median_purchase_price
by the target variable fraud to see if there are any differences between fraudu-
lent and non-fraudulent transactions
fig, ax = plt.subplots(1,2)
df['ratio_to_median_purchase_price'].hist(bins = 50, range=[0,

30], by=df['fraud'], ax = ax)↪

ax[0].set_xlabel('Ratio to Median Purchase Price')
ax[1].set_xlabel('Ratio to Median Purchase Price')
ax[0].set_ylabel('Count')
ax[0].set_title('No Fraud')
ax[1].set_title('Fraud')
plt.show()
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There are indeed some differences between fraudulent and non-fraudulent trans-
actions. For example, fraudulent transactions seem to have a higher ratio to the
median purchase price, which is expected as fraudsters might try to make large
transactions to maximize their profit.

We can also look at the correlation between the variables in the dataset. The
correlation is a measure of how two variables move together
df.corr() # Pearson correlation (for linear relationships)

distance_from_home distance_from_last_transaction ratio_to_median_purchase_price repeat_retailer used_chip used_pin_number online_order fraud
distance_from_home 1.000000 0.000193 -0.001374 0.143124 -0.000697 -0.001622 -0.001301 0.187571
distance_from_last_transaction 0.000193 1.000000 0.001013 -0.000928 0.002055 -0.000899 0.000141 0.091917
ratio_to_median_purchase_price -0.001374 0.001013 1.000000 0.001374 0.000587 0.000942 -0.000330 0.462305
repeat_retailer 0.143124 -0.000928 0.001374 1.000000 -0.001345 -0.000417 -0.000532 -0.001357
used_chip -0.000697 0.002055 0.000587 -0.001345 1.000000 -0.001393 -0.000219 -0.060975
used_pin_number -0.001622 -0.000899 0.000942 -0.000417 -0.001393 1.000000 -0.000291 -0.100293
online_order -0.001301 0.000141 -0.000330 -0.000532 -0.000219 -0.000291 1.000000 0.191973
fraud 0.187571 0.091917 0.462305 -0.001357 -0.060975 -0.100293 0.191973 1.000000

df.corr('spearman') # Spearman correlation (for monotonic
relationships)↪
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distance_from_home distance_from_last_transaction ratio_to_median_purchase_price repeat_retailer used_chip used_pin_number online_order fraud
distance_from_home 1.000000 -0.001068 -0.000152 0.559724 -0.000118 -0.000338 -0.001812 0.095032
distance_from_last_transaction -0.001068 1.000000 -0.000111 -0.001352 -0.000165 0.000555 -0.001076 0.034661
ratio_to_median_purchase_price -0.000152 -0.000111 1.000000 0.001202 -0.000099 0.000251 -0.000376 0.342838
repeat_retailer 0.559724 -0.001352 0.001202 1.000000 -0.001345 -0.000417 -0.000532 -0.001357
used_chip -0.000118 -0.000165 -0.000099 -0.001345 1.000000 -0.001393 -0.000219 -0.060975
used_pin_number -0.000338 0.000555 0.000251 -0.000417 -0.001393 1.000000 -0.000291 -0.100293
online_order -0.001812 -0.001076 -0.000376 -0.000532 -0.000219 -0.000291 1.000000 0.191973
fraud 0.095032 0.034661 0.342838 -0.001357 -0.060975 -0.100293 0.191973 1.000000

This is still a bit hard to read. We can visualize the correlation matrix with
a heatmap using the Seaborn library, which we have already imported at the
beginning of the notebook.
corr = df.corr('spearman')
cmap = sns.diverging_palette(10, 255, as_cmap=True) # Create a

color map↪

mask = np.triu(np.ones_like(corr, dtype=bool)) # Create a mask to
only show the lower triangle of the matrix↪

sns.heatmap(corr, cmap=cmap, vmax=1, center=0, mask=mask) #
Create a heatmap of the correlation matrix (Note: vmax=1
makes sure that the color map goes up to 1 and center=0 are
used to center the color map at 0)

↪

↪

↪

plt.show()
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Note how ratio_to_median_purchase_price is positively correlated with
fraud, which is expected as we saw in the previous plot that fraudulent
transactions have a higher ratio to the median purchase price. Furthermore,
used_chip and used_pin_number are negatively correlated with fraud, which
makes sense as transactions, where the chip or the pin is used, are supposed to
be more secure.

We can also plot boxplots to visualize the distribution of the variables
selector = ['distance_from_home',

'distance_from_last_transaction',
'ratio_to_median_purchase_price'] # Select the variables we
want to plot

↪

↪

↪

plt.figure()
ax = sns.boxplot(data = df[selector], orient = 'h')
ax.set(xscale = "log") # Set the x-axis to a logarithmic scale to

better visualize the data↪

plt.show()
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Boxplots are a good way to visualize the distribution of a variable, as they show
the median, the interquartile range, and the outliers. Each of the distributions
shown in the boxplots above has a long right tail, which explains the large
number of outliers. However, you have to be careful: you cannot just remove
these outliers since these are likely to be fraudulent transactions.

Let’s see how many fraudulent transactions we would remove if we blindly re-
move the outliers according to the interquartile range
# Compute the interquartile range
Q1 = df['ratio_to_median_purchase_price'].quantile(0.25)
Q3 = df['ratio_to_median_purchase_price'].quantile(0.75)
IQR = Q3 - Q1

# Identify outliers based on the interquartile range
threshold = 1.5
outliers = df[(df['ratio_to_median_purchase_price'] < Q1 -

threshold * IQR) | (df['ratio_to_median_purchase_price'] > Q3
+ threshold * IQR)]

↪

↪

# Count the number of fraudulent transactions amoung our selected
outliers↪

outliers['fraud'].value_counts()

fraud
1.0 53092
0.0 31294
Name: count, dtype: int64
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df['fraud'].value_counts()

fraud
0.0 912597
1.0 87403
Name: count, dtype: int64

53092 of 87403 (more than half!) of our fraudulent transactions would be re-
moved if we would have blindly removed the outliers according to the interquar-
tile range. This is a significant number of observations, which would likely
hurt the performance of our machine-learning model. Therefore, we should not
remove these outliers. It would make the imbalance of our dataset even worse.

Splitting the Data into Training and Test Sets

Before we can train a machine learning model, we need to split our dataset into
a training set and a test set.
X = df.drop('fraud', axis=1) # All variables except `fraud`
y = df['fraud'] # Only our fraud variables

The training set is used to train the model, while the test set is used to
evaluate the model. We will use the train_test_split function from the
sklearn.model_selection module to split our dataset. We will use 70% of
the data for training and 30% for testing. We will also set the stratify argu-
ment to y to make sure that the distribution of the target variable is the same
in the training and test sets. Otherwise, we might randomly not have any fraud-
ulent transactions in the test set, which would make it impossible to correctly
evaluate our model.
X_train, X_test, y_train, y_test = train_test_split(X, y,

stratify=y, test_size = 0.3, random_state = 42)↪

Scaling Features

To improve the performance of our machine learning model, we should scale the
features. This is especially important for models that are sensitive to the scale
of the features, such as logistic regression. We will use the StandardScaler
class from the sklearn.preprocessing module to scale the features. The
StandardScaler class scales the features so that they have a mean of 0 and
a standard deviation of 1. Since we don’t want to scale features that are binary
(0 or 1), we will define a small function that scales only the features that we
want
def scale_features(scaler, df, col_names, only_transform=False):

# Extract the features we want to scale
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features = df[col_names]

# Fit the scaler to the features and transform them
if only_transform:

features = scaler.transform(features.values)
else:

features = scaler.fit_transform(features.values)

# Replace the original features with the scaled features
df[col_names] = features

Then, we need to run the function
col_names = ['distance_from_home',

'distance_from_last_transaction',
'ratio_to_median_purchase_price']

↪

↪

scaler = StandardScaler()
scale_features(scaler, X_train, col_names)
scale_features(scaler, X_test, col_names, only_transform=True)

Note that we only fit the scaler to the training set and then transform both the
training and test set. This ensures that the same values for the features produce
the same output in the training and test set. Otherwise, if we fit the scaler to
the test data as well, the meaning of certain values in the test set might change,
which would make it impossible to evaluate the model correctly.

Mini-Exercise

Try switching to MinMaxScaler instead of StandardScaler and see how
it affects the performance of the model. MinMaxScaler scales the features
so that they are between 0 and 1.

2.5.2 Implementing Logistic Regression
Now that we have explored and preprocessed our dataset, we can move on to the
next step: training a machine learning model. We will use a logistic regression
model to predict whether a transaction is fraudulent or not.

Using the LogisticRegression class from the sklearn.linear_model module,
fitting the model to the data is straightforward using the fit method
clf = LogisticRegression().fit(X_train, y_train)

We can then use the predict method to predict the class of the test set
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clf.predict(X_test.head(5))

array([0., 0., 0., 0., 1.])

The actual classes of the first five observations in the test dataset are
y_test.head(5)

217309 0.0
902387 0.0
175152 0.0
527113 0.0
973041 1.0
Name: fraud, dtype: float64

This seems to match quite well. Let’s have a look at different performance
metrics
y_pred = clf.predict(X_test)
y_proba = clf.predict_proba(X_test)

print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
print(f"Precision: {precision_score(y_test, y_pred)}")
print(f"Recall: {recall_score(y_test, y_pred)}")
print(f"ROC AUC: {roc_auc_score(y_test, y_proba[:, 1])}")

Accuracy: 0.95908
Precision: 0.8954682094038908
Recall: 0.6021128103428549
ROC AUC: 0.9671832218100465

As expected, the accuracy is quite high since we do not have many fraudulent
transactions. Recall that the precision (Precision = TP

TP+FP ) is the fraction of
correctly predicted fraudulent transactions among all transactions transactions
predicted to be fraudulent. The recall (Recall = TP

TP+FN ) is the fraction of
correctly predicted fraudulent transactions among the actual fraudulent trans-
actions. The ROC AUC is the area under the curve for the receiver operating
characteristic (ROC) curve
# Compute the ROC curve
y_proba = clf.predict_proba(X_test)
fpr, tpr, thresholds = roc_curve(y_test, y_proba[:,1])

# Plot the ROC curve
plt.plot(fpr, tpr)
plt.plot([0, 1], [0, 1], linestyle='--', color='grey')
plt.xlabel('False Positive Rate (FPR)')
plt.ylabel('True Positive Rate (TPR)')



2.5. PYTHON IMPLEMENTATION 55

plt.title('ROC Curve')
plt.show()

The confusion matrix for the test set can be computed as follows
conf_mat = confusion_matrix(y_test, y_pred, labels=[1,

0]).transpose() # Transpose the sklearn confusion matrix to
match the convention in the lecture

↪

↪

conf_mat

array([[ 15788, 1843],
[ 10433, 271936]])

We can also plot the confusion matrix as a heatmap
sns.heatmap(conf_mat, annot=True, cmap='Blues', fmt='g',

xticklabels=['Fraud', 'No Fraud'], yticklabels=['Fraud', 'No
Fraud'])

↪

↪

plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.show()
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As you can see, we have mostly true negatives and true positives. However, there
is still a significant number of false negatives, which means that we are missing
fraudulent transactions, and a significant number of false positives, which means
that we are predicting transactions as fraudulent that are not fraudulent.

If we would like to use a threshold other than 0.5 to predict the class of the test
set, we can do so as follows
# Alternative threshold
threshold = 0.1

# Predict the class of the test set
y_pred_alt = (y_proba[:, 1] >= threshold).astype(int)

# Show the performance metrics
print(f"Accuracy: {accuracy_score(y_test, y_pred_alt)}")
print(f"Precision: {precision_score(y_test, y_pred_alt)}")
print(f"Recall: {recall_score(y_test, y_pred_alt)}")

Accuracy: 0.9112033333333334
Precision: 0.49579121188932296
Recall: 0.9389420693337401

Setting a lower threshold increases the recall but decreases the precision. This is
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because we are more likely to predict a transaction as fraudulent, which increases
the number of true positives but also the number of false positives.

What the correct threshold is depends on the problem at hand. For example,
if the cost of missing a fraudulent transaction is very high, you might want to
set a lower threshold to increase the recall. If the cost of falsely predicting a
transaction as fraudulent is very high, you might want to set a higher threshold
to increase the precision.

We can also plot the performance metrics for different thresholds
N = 50
thresholds_array = np.linspace(0.0, 0.999, N)
accuracy_array = np.zeros(N)
precision_array = np.zeros(N)
recall_array = np.zeros(N)

# Compute the performance metrics for different thresholds
for ii, thresh in enumerate(thresholds_array):

y_pred_alt_tmp = (y_proba[:, 1] > thresh).astype(int)
accuracy_array[ii] = accuracy_score(y_test, y_pred_alt_tmp)
precision_array[ii] = precision_score(y_test, y_pred_alt_tmp)
recall_array[ii] = recall_score(y_test, y_pred_alt_tmp)

# Plot the performance metrics
plt.plot(thresholds_array, accuracy_array, label='Accuracy')
plt.plot(thresholds_array, precision_array, label='Precision')
plt.plot(thresholds_array, recall_array, label='Recall')
plt.xlabel('Threshold')
plt.ylabel('Score')
plt.legend()
plt.show()
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2.5.3 Conclusions
In this notebook, we have seen how to implement a logistic regression model in
Python. We have loaded a dataset, explored and preprocessed it, and trained a
logistic regression model to predict whether a transaction is fraudulent or not.
We have evaluated the model using different performance metrics and have seen
how the choice of threshold affects the performance of the model.

There are many ways to improve the performance of the model. For example,
we could try different machine learning models, or engineer new features. We
could also try to deal with the imbalanced dataset by using techniques such
as oversampling or undersampling. However, this is beyond the scope of this
notebook.



Chapter 3

Decision Trees

Now that we have covered some of the basics of machine learning, we can start
looking at some of the most popular machine learning algorithms. In this chap-
ter, we will focus on Decision Trees and tree-based ensemble methods
such as Random Forests and (Gradient) Boosted Trees.

3.1 What is a Decision Tree?
Decision trees, also called Classification and Regression Trees (CART)
are a popular supervised learning method. As the name CART suggests,
they are used for both classification and regression problems. They are
simple to understand and interpret, and the process of building a decision tree
is intuitive. Decision trees are also the foundation of more advanced en-
semble methods like Random Forests and Boosting.

Does it have more than 2 legs?

It’s a dog!

yes

Does it have feathers?

It’s a bird!

yes

Does it live on land?

It’s a snake!

yes

It’s a fish!

no

no

no

Figure 3.1: Classification Tree - Classification of Dogs, Snakes, Fish, and Birds
based on their Features

59
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Figure 3.1 shows an example of a decision tree for a classification problem, i.e.,
a classification tree. In this case, the decision tree is used to classify animals
into four categories: dogs, snakes, fish, and birds. The tree asks a series of
questions about the features of the animal (e.g., number of legs, feathers, and
habitat) and uses the answers to classify the animal. This means that the tree
partitions the feature space into different regions that are associated with a
particular class label.

x1 ≤ 3

x1 ≤ 1.5

y = 1

yes

y = 2

no

yes

x2 ≤ 5

y = 4

yes

x1 ≤ 6

y = 6

yes

y = 5

no

no

no

Figure 3.2: Regression Tree - Prediction of 𝑦 based on 𝑥1 and 𝑥2

Figure 3.2 shows an example of a decision tree for a regression problem, i.e.,
a regression tree. In this case, the decision tree is used to predict some
continuous variable 𝑦 (e.g., a house price) based on features 𝑥1 and 𝑥2 (e.g.,
number of rooms and size of the property). As Figure 3.7 shows, the regression
tree partitions the (𝑥1, 𝑥2)-space into different regions that are associated with
a predicted value 𝑦. Mathematically, the prediction of a regression tree can be
expressed as

̂𝑦 =
𝑀

∑
𝑚=1

𝑐𝑚𝟙(𝑥 ∈ 𝑅𝑚)

where 𝑅𝑚 are the regions of the feature space, 𝑐𝑚 are the predicted (i.e., average)
values in the regions, 𝟙(𝑥 ∈ 𝑅𝑚) is an indicator function that is 1 if 𝑥 is in region
𝑅𝑚 and 0 otherwise, and 𝑀 is the number of regions.

Mini-Exercise

Given the decision tree in Figure 3.2, what would be the predicted value
of 𝑦 for the following data points?

1. (𝑥1, 𝑥2) = (1, 1)
2. (𝑥1, 𝑥2) = (2, 2)
3. (𝑥1, 𝑥2) = (2, 8)
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Figure 3.3: Regression Tree - Regions and Predictions of Decision Tree in Fig-
ure 3.2

4. (𝑥1, 𝑥2) = (10, 4)
5. (𝑥1, 𝑥2) = (7, 8)

3.2 Terminology

Root/Decision Node

Decision Node

Decision Node

Leaf Node Leaf Node

Leaf Node

Leaf Node

Subtree/Branch

Figure 3.4: Decision Tree - Terminology

Figure 3.4 shows some of the terminology that you might encounter in decision
trees. The root node is the first node in the tree. The root node is split
into decision nodes (or leaf nodes) based on the values of the features. The
decision nodes are further split into decision nodes or leaf nodes. The leaf
nodes represent the final prediction of the model. A subtree or branch is a
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part of the tree that starts at a decision node and ends at a leaf node. The
depth of a tree is the length of the longest path from the root node to a leaf
node.

Furthermore, one can also differentiate between child and parent nodes. A
child node is a node that results from a split (e.g., the first (reading from the
top) decision node and leaf node in Figure 3.4 are child nodes of the root node).
The parent node is the node that is split to create the child nodes (e.g., the root
node in Figure 3.4 is the parent node of the first decision node and leaf node).

3.3 How To Grow a Tree
A key question is how to determine the order of variables and thresholds that are
used in all the splits of a decision tree. There are different algorithms to grow a
decision tree, but the most common one is the CART algorithm. The CART
algorithm is a greedy algorithm that grows the tree in a top-down manner.
The reason for this algorithm choice is that it is computationally infeasible to
consider all possible (fully grown) trees to find the best-performing one. So, the
CART algorithm grows the tree in a step-by-step manner choosing the splits
in a greedy manner (i.e., choosing the one that performs best at that step).
This means that the algorithm does not consider the future consequences of the
current split and may not find the optimal tree.

The basic idea is to find a split that minimizes some loss function 𝑄𝑠 and to
repeat this recursively for all resulting child nodes. Suppose we start from zero,
meaning that we first need to determine the root node. We compute the loss
function 𝑄𝑠 for all possible splits 𝑠 that we can make. This means we need to
consider all variables in our dataset (and all split thresholds) and choose the
one that minimizes the loss 𝑄𝑠. We then repeat this process for each of the
child nodes, and so on, until we reach a stopping criterion. Figure 3.5 shows an
example of a candidate split.

Candidate Split s: e.g., x1 ≤ 3

New Node (τ = 1)

Loss: Qs
1

New Node (τ = 2)

Loss: Qs
2

Total loss: Qs = N1

N1+N2
Qs

1 +
N2

N1+N2
Qs

2

Data Points

Data Points in Region R2Data Points in Region R1

Figure 3.5: Example of Decision Tree Split

Let 𝜏 denote the index of a leaf node with each leaf node 𝜏 corresponding to a
region 𝑅𝜏 with 𝑁𝜏 data points. In the case of a classification problem, the loss
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function is typically either the Gini impurity

𝑄𝑠
𝜏 =

𝐾
∑
𝑘=1

𝑝𝜏𝑘(1 − 𝑝𝜏𝑘) = 1 −
𝐾

∑
𝑘=1

𝑝2
𝜏𝑘

or the cross-entropy

𝑄𝑠
𝜏 = −

𝐾
∑
𝑘=1

𝑝𝜏𝑘 log(𝑝𝜏𝑘)

where 𝑝𝜏𝑘 is the proportion of observations in region 𝑅𝜏 that belong to class 𝑘
and 𝐾 is the number of classes. Note that both measures become zero when all
observations in the region belong to the same class (i.e., 𝑝𝜏𝑘 = 1 or 𝑝𝜏𝑘 = 0).
This is the ideal case for a classification problem: we say that the node is pure.

In the case of a regression problem, the loss function is typically the mean
squared error (MSE)

𝑄𝑠
𝜏 = 1

𝑁𝜏
∑
𝑖∈𝑅𝜏

(𝑦𝑖 − ̂𝑦𝜏)2

where ̂𝑦𝜏 is the predicted value of the target variable 𝑦 in region 𝑅𝜏

̂𝑦𝜏 = 1
𝑁𝜏

∑
𝑖∈𝑅𝜏

𝑦𝑖,

i.e., the average of the target variable in region 𝑅𝜏 .

The total loss of a split 𝑄𝑠 is then the weighted sum of the loss functions of
the child nodes

𝑄𝑠 = 𝑁1
𝑁1 + 𝑁2

𝑄𝑠
1 + 𝑁2

𝑁1 + 𝑁2
𝑄𝑠

2

where 𝑁1 and 𝑁2 are the number of data points in the child nodes.

Once we have done this for the root node, we repeat the process for each child
node. Then, we repeat it for the child nodes of the child nodes, and so on, until
we reach a stopping criterion. The stopping criterion can be, for example, a
maximum depth of the tree, a minimum number of data points in a leaf node,
or a minimum reduction in the loss function.
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3.3.1 Example: Classification Problem
Suppose you have the data in Table 3.1. The goal is to predict whether a bank
will default based on two features: whether the bank is systemically important
and its Common Equity Tier 1 (CET1) ratio (i.e., the ratio of CET1 capital
to risk-weighted assets). The CET1 ratio is a measure of a bank’s financial
strength.

Table 3.1: (Made-up) Data for Classification Problem (Bank Default Prediction)

Default Systemically Important Bank CET1 Ratio (in %)
Yes No 8.6
No No 9
Yes Yes 10.6
Yes Yes 10.8
No No 11.2
No No 11.5
No Yes 12.4

Given that you only have two features, CET1 Ratio and whether it is a system-
ically important bank, you only have two possible variables for the root node.
However, since CET1 is a continuous variable, there are potentially many thresh-
olds that you could use to split the data. To find this threshold, we need to
calculate the Gini impurity of each possible split and choose the one that
minimizes the impurity.

Table 3.2: Gini Impurities for Different CET1 Thresholds

CET1 Ratio Threshold Q� Q� Q
8.8 0 0.44 0.38
9.8 0.5 0.48 0.49

10.7 0.44 0.38 0.4
11 0.38 0 0.21

11.35 0.48 0 0.34
11.95 0.5 0 0.43

According to Table 3.2, the best split is at a CET1 ratio of 7.0%. The Gini
impurity for CET1 ≤ 11% is 0.38, the Gini impurity of CET1 > 11% is 0, and
the total impurity is 0.21. However, we could also split based on whether a bank
would be systemically important. In this case, the Gini impurity of the split is
0.40. This means that the best split is based on the CET1 ratio. We split the
data into two regions: one with a CET1 ratio of 11.0% or less and one with a
CET1 ratio of more than 11.0%.
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Note that the child node for a CET1 ratio of more than 11.0% is already pure,
i.e., all banks in this region are not defaulting. However, the child node for a
CET1 ratio of 11.0% or less is not pure meaning that we can do additional splits
as shown in Figure 3.6. In particular, both, the split at a CET1 ratio of 8.8%
and the split based on whether a bank is systemically important yield a Gini
impurity of 0.25. We choose the split based on whether a bank is systemically
important as the next split, which means we can do the final split based on the
CET1 ratio.

CET1 Ratio ≤ 11.0%

Systemically Important?

Default

yes

CET1 Ratio ≤ 8.8%

Default

yes

No Default

no

no

yes

No Default

no

Figure 3.6: Classification Tree for Table 3.1

3.3.2 Stopping Criteria and Pruning a Tree
A potential problem with decision trees is that they can overfit the training
data. In principle, we can get the error down to zero if we just make enough
splits. This means that the tree can become too complex and capture noise in
the data rather than the underlying relationship. To prevent this, we usually
set some early stopping criteria like

• A maximum depth of the tree,
• A minimum number of data points in a leaf node,
• A minimum number of data points required in a decision node for a split,
• A minimum reduction in the loss function, or
• A maximum number of leaf nodes,

which will prevent the tree from growing too large and all the nodes from be-
coming pure. We can also use a combination of these criteria. In the Python
applications, we will see how to set some of these stopping criteria.

Figure 3.7 shows an example of how stopping criteria affect the fit of a decision
tree. Note that without any stopping criteria, the tree fits the data perfectly
but is likely to overfit. By setting a maximum depth or a minimum number of
data points in a leaf node, we can prevent the tree from overfitting the data.

Another way to prevent overfitting is to prune the tree, i.e., to remove nodes
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Figure 3.7: Regression Tree - Effect of Stopping Criteria

from the tree according to certain rules. This is done after (not during) growing
the tree. One common approach is to use cost-complexity pruning. The idea
is related to regularization that we have seen before, i.e., we add a term to the
loss functions above that penalizes tree complexity. The pruning process is
controlled by a hyperparameter 𝜆 that determines the trade-off between the
complexity of the tree and its fit to the training data.

Mini-Exercise

How would the decision tree in Figure 3.6 look like if
1. we required a minimum of 2 data points in a leaf node?
2. we required a maximum depth of 2?
3. we required a maximum depth of 2 and a minimum of 3 data points

in a leaf node?
4. we required a minimum of 3 data points for a split?
5. we required a minimum of 5 data points for a split?

3.4 Advantages and Disadvantages
As noted by Murphy (2022), decision trees are popular because of some of the
advantages they offer

• Easy to interpret
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• Can handle mixed discrete and continuous inputs
• Insensitive to monotone transformations of the inputs
• Automatic variable selection
• Relatively robust to outliers
• Fast to fit and scale well to large data sets
• Can handle missing input features1

Their disadvantages include

• Not very accurate at prediction compared to other kinds of models (note,
for example, the piece-wise constant nature of the predictions in regression
problems)

• They are unstable: small changes to the input data can have large effects
on the structure of the tree (small changes at the top can affect the rest
of the tree)

3.5 Ensemble Methods
Decision trees are powerful models, but they can be unstable. To address these
issues, we can use ensemble methods that combine multiple decision trees
to improve the performance of the model. The two most popular ensemble
methods are Random Forests and Boosting.

3.5.1 Random Forests
The idea of Random Forests is to build a large number of trees (also called
weak learners in this context), each of which is trained on a random subset
of the data. The predictions of the trees are then averaged in regression tasks
or determined through majority voting in the case of classification tasks to make
the final prediction. Training multiple trees on random subsets of the data is
also called bagging (short for bootstrap aggregating). Random Forests adds
an additional layer of randomness by selecting a random subset of features for
each tree. This means that each tree is trained on a different subset of the data
and a different subset of features.

The basic steps of the Random Forest algorithm are as follows:

1. Bootstrapping: Randomly draw 𝑁 samples with replacement from the
training data.

2. Grow a tree: For each node of the tree, randomly select 𝑚 features from
the 𝑝 features in the bootstrap dataset and find the best split based on
these 𝑚 features.

3. Repeat: Repeat steps 1 and 2 𝐵 times to grow 𝐵 trees.
1Note to handle missing input data one can use “backup” variables that are correlated with

the variable of interest and can be used to make a split whenever the data is missing. Such
splits are called surrogate splits. In the case of categorical variables, one can also use a
separate category for missing values.
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· · ·

It’s a dog! It’s a cat! It’s a dog!

Tree 1 Tree 2 Tree B

Figure 3.8: Random Forests - Ensemble of Decision Trees with Majority Decision
“It’s a dog!”

4. Prediction: To get the prediction for a new data point, average the
predictions of all trees in the case of regression or use a majority vote in
the case of classification.

Note that because we draw samples with replacement, some samples will not be
included in the bootstrap sample. These samples are called out-of-bag (OOB)
samples. The OOB samples can be used to estimate the performance of the
model without the need for cross-validation since it is “performed along the way”
(Hastie, Tibshirani, and Friedman (2009)). The OOB error is almost identical
to the error obtained through N-fold cross-validation.

3.5.2 Boosting
Another popular ensemble method is Boosting. The idea behind boosting is
to train a sequence of weak learners (e.g., decision trees), each of which tries to
correct the mistakes of the previous one. The predictions of the weak learners
are then combined to make the final prediction. Note how this differs from
Random Forests where the trees are trained independently of each other in
parallel, while here we sequentially train the trees to fix the mistakes of the
previous ones. The basic steps can be roughly summarized as follows:

1. Initialize the model: Construct a base tree with just a root node. In
the case of a regression problem, the prediction could be the mean of the
target variable. In the case of a classification problem, the prediction could
be the log odds of the target variable.

2. Train a weak learner: Train a weak learner on the data. The weak
learner tries to correct the mistakes of the previous model.

3. Update the model: Update the model by adding the weak learner to
the model. The added weak learner is weighted by a learning rate 𝜂.

4. Repeat: Repeat steps 2 and 3 until we have grown 𝐵 trees.

XGBoost (eXtreme Gradient Boosting) is a popular implementation of the (gra-
dient) boosting algorithm. It is known for its performance and is widely used
in machine learning competitions. The algorithm is based on the idea of gra-
dient boosting, which is a generalization of boosting. We will see how to im-
plement XGBoost in Python but will not go into the details of the algorithm
here. Other popular implementations of the boosting algorithm are AdaBoost
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and LightGBM.

3.5.3 Interpreting Ensemble Methods
A downside of using ensemble methods is that you lose the interpretability of
a single decision tree. However, there are ways to interpret ensemble methods.
One way is to look at the feature importance. Feature importance tells you
how much each feature contributes to the reduction in the loss function. The
idea is that features that are used in splits that lead to a large reduction in
the loss function are more important. Murphy (2022) shows that the feature
importance of feature 𝑘 is

𝑅𝑘(𝑏) =
𝐽−1
∑
𝑗=1

𝐺𝑗𝕀(𝑣𝑗 = 𝑘)

where the sum is over all non-leaf (internal) nodes, 𝐺𝑗 is the loss reduction
(gain) at node 𝑗, and 𝑣𝑗 = 𝑘 if node 𝑗 uses feature 𝑘. Simply put, we sum up
all gains of the splits that use feature 𝑘. Then, we average over all trees in our
ensemble to get the feature importance of feature 𝑘

𝑅𝑘 = 1
𝐵

𝐵
∑
𝑏=1

𝑅𝑘(𝑏).

Note that the resulting 𝑅𝑘 are sometimes normalized such that the maximum
value is 100. This means that the most important feature has a feature impor-
tance of 100 and all other features are scaled accordingly. Note that feature
importance can in principle also be computed for a single decision tree.

Warning

Note that feature importance tends to favor continuous variables and vari-
ables with many categories (for an example see here). As an alternative,
one can use permutation importance which is a model-agnostic way
to compute the importance of different features. The idea is to shuffle
the values of a feature in the test data set and see how much the model
performance decreases. The more the performance decreases, the more
important the feature is.

3.6 Python Implementation
Let’s have a look at how to implement a decision tree in Python. Again, we
need to first import the required packages and load the data

https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance.html
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import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score,

roc_auc_score, recall_score, precision_score, roc_curve↪

from sklearn.inspection import permutation_importance
pd.set_option('display.max_columns', 50) # Display up to 50

columns↪

from io import BytesIO
from urllib.request import urlopen
from zipfile import ZipFile
import os.path

# Check if the file exists
if not os.path.isfile('data/card_transdata.csv'):

print('Downloading dataset...')

# Define the dataset to be downloaded
zipurl = 'https://www.kaggle.com/api/v1/datasets/download/dh ⌋
anushnarayananr/credit-card-fraud'↪

# Download and unzip the dataset in the data folder
with urlopen(zipurl) as zipresp:

with ZipFile(BytesIO(zipresp.read())) as zfile:
zfile.extractall('data')

print('DONE!')

else:

print('Dataset already downloaded!')

# Load the data
df = pd.read_csv('data/card_transdata.csv')

Dataset already downloaded!

This is the dataset of credit card transactions from Kaggle.com which we
have used before. Recall that the target variable 𝑦 is fraud, which indicates

https://www.kaggle.com/datasets/dhanushnarayananr/credit-card-fraud/data
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whether the transaction is fraudulent or not. The other variables are the features
𝑥 of the transactions.
df.head(20)

distance_from_home distance_from_last_transaction ratio_to_median_purchase_price repeat_retailer used_chip used_pin_number online_order fraud
0 57.877857 0.311140 1.945940 1.0 1.0 0.0 0.0 0.0
1 10.829943 0.175592 1.294219 1.0 0.0 0.0 0.0 0.0
2 5.091079 0.805153 0.427715 1.0 0.0 0.0 1.0 0.0
3 2.247564 5.600044 0.362663 1.0 1.0 0.0 1.0 0.0
4 44.190936 0.566486 2.222767 1.0 1.0 0.0 1.0 0.0
5 5.586408 13.261073 0.064768 1.0 0.0 0.0 0.0 0.0
6 3.724019 0.956838 0.278465 1.0 0.0 0.0 1.0 0.0
7 4.848247 0.320735 1.273050 1.0 0.0 1.0 0.0 0.0
8 0.876632 2.503609 1.516999 0.0 0.0 0.0 0.0 0.0
9 8.839047 2.970512 2.361683 1.0 0.0 0.0 1.0 0.0
10 14.263530 0.158758 1.136102 1.0 1.0 0.0 1.0 0.0
11 13.592368 0.240540 1.370330 1.0 1.0 0.0 1.0 0.0
12 765.282559 0.371562 0.551245 1.0 1.0 0.0 0.0 0.0
13 2.131956 56.372401 6.358667 1.0 0.0 0.0 1.0 1.0
14 13.955972 0.271522 2.798901 1.0 0.0 0.0 1.0 0.0
15 179.665148 0.120920 0.535640 1.0 1.0 1.0 1.0 0.0
16 114.519789 0.707003 0.516990 1.0 0.0 0.0 0.0 0.0
17 3.589649 6.247458 1.846451 1.0 0.0 0.0 0.0 0.0
18 11.085152 34.661351 2.530758 1.0 0.0 0.0 1.0 0.0
19 6.194671 1.142014 0.307217 1.0 0.0 0.0 0.0 0.0

df.describe()

distance_from_home distance_from_last_transaction ratio_to_median_purchase_price repeat_retailer used_chip used_pin_number online_order fraud
count 1000000.000000 1000000.000000 1000000.000000 1000000.000000 1000000.000000 1000000.000000 1000000.000000 1000000.000000
mean 26.628792 5.036519 1.824182 0.881536 0.350399 0.100608 0.650552 0.087403
std 65.390784 25.843093 2.799589 0.323157 0.477095 0.300809 0.476796 0.282425
min 0.004874 0.000118 0.004399 0.000000 0.000000 0.000000 0.000000 0.000000
25% 3.878008 0.296671 0.475673 1.000000 0.000000 0.000000 0.000000 0.000000
50% 9.967760 0.998650 0.997717 1.000000 0.000000 0.000000 1.000000 0.000000
75% 25.743985 3.355748 2.096370 1.000000 1.000000 0.000000 1.000000 0.000000
max 10632.723672 11851.104565 267.802942 1.000000 1.000000 1.000000 1.000000 1.000000

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
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Data columns (total 8 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 distance_from_home 1000000 non-null float64
1 distance_from_last_transaction 1000000 non-null float64
2 ratio_to_median_purchase_price 1000000 non-null float64
3 repeat_retailer 1000000 non-null float64
4 used_chip 1000000 non-null float64
5 used_pin_number 1000000 non-null float64
6 online_order 1000000 non-null float64
7 fraud 1000000 non-null float64
dtypes: float64(8)
memory usage: 61.0 MB

3.6.1 Data Preprocessing
Since we have already explored the dataset in the previous notebook, we can
skip that part and move directly to the data preprocessing.

We will again split the data into training and test sets using the train_test_split
function
X = df.drop('fraud', axis=1) # All variables except `fraud`
y = df['fraud'] # Only our fraud variables
X_train, X_test, y_train, y_test = train_test_split(X, y,

stratify=y, test_size = 0.3, random_state = 42)↪

Then we can do the feature scaling to ensure our non-binary variables have
mean zero and variance 1
def scale_features(scaler, df, col_names, only_transform=False):

# Extract the features we want to scale
features = df[col_names]

# Fit the scaler to the features and transform them
if only_transform:

features = scaler.transform(features.values)
else:

features = scaler.fit_transform(features.values)

# Replace the original features with the scaled features
df[col_names] = features

col_names = ['distance_from_home',
'distance_from_last_transaction',
'ratio_to_median_purchase_price']

↪

↪
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scaler = StandardScaler()
scale_features(scaler, X_train, col_names)
scale_features(scaler, X_test, col_names, only_transform=True)

3.6.2 Implementing a Decision Tree Classifier
We can now implement a decision tree model using the DecisionTreeClassifier
class from the sklearn.tree module. Fitting the model to the data is almost
the same as when we used logistic regression
clf_dt = DecisionTreeClassifier(random_state=0).fit(X_train,

y_train)↪

We can visualize the tree using the plot_tree function from the sklearn.tree
module
plot_tree(clf_dt, filled=True, feature_names =

X_train.columns.to_list())↪

plt.show()

The tree is quite large and it’s difficult to see details. Let’s only look at the first
level of the tree
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plot_tree(clf_dt, max_depth=1, filled=True, feature_names =
X_train.columns.to_list(), fontsize=10)↪

plt.show()

Recall from the data exploration that ratio_to_median_purchase_price was
highly correlated with fraud. The decision tree model seems to have picked up
on this as well since the first split is based on this variable. Also, note that the
order in which the variables are split can differ between different branches of
the tree.

We can also make predictions using the model and evaluate its performance
using the same functions as before
y_pred_dt = clf_dt.predict(X_test)
y_proba_dt = clf_dt.predict_proba(X_test)

print(f"Accuracy: {accuracy_score(y_test, y_pred_dt)}")
print(f"Precision: {precision_score(y_test, y_pred_dt)}")
print(f"Recall: {recall_score(y_test, y_pred_dt)}")
print(f"ROC AUC: {roc_auc_score(y_test, y_proba_dt[:, 1])}")

Accuracy: 0.9999833333333333
Precision: 0.9999237223493517
Recall: 0.999885587887571
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ROC AUC: 0.999939141362689

The decision tree performs substantially better than the logistic regression. The
ROC AUC score is much closer to the maximum value of 1 and we have an almost
perfect classifier
# Compute the ROC curve
fpr, tpr, thresholds = roc_curve(y_test, y_proba_dt[:, 1])

# Plot the ROC curve
plt.plot(fpr, tpr)
plt.plot([0, 1], [0, 1], linestyle='--', color='grey')
plt.xlabel('False Positive Rate (FPR)')
plt.ylabel('True Positive Rate (TPR)')
plt.title('ROC Curve')
plt.show()

Let’s also check the confusion matrix to see where we still make mistakes
conf_mat = confusion_matrix(y_test, y_pred_dt, labels=[1,

0]).transpose() # Transpose the sklearn confusion matrix to
match the convention in the lecture

↪

↪

sns.heatmap(conf_mat, annot=True, cmap='Blues', fmt='g',
xticklabels=['Fraud', 'No Fraud'], yticklabels=['Fraud', 'No
Fraud'])

↪

↪
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plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.show()

There are only 3 false negatives, i.e., fraudulent transactions that we did not
detect. There are also 2 false positives, i.e., “false alarms”, where non-fraudulent
transactions were classified as fraudulent. The decision tree classifier is almost
perfect which is a bit suspicious. We might have been lucky in the sense that
the training and test sets were split in a way that the model performs very well.
We should not expect this to be the case in general. It might be better to use
cross-validation to get a more reliable estimate of the model’s performance.

3.6.3 Implementing a Random Forest Classifier
We can also implement a random forest model using the RandomForestClassifier
class from the sklearn.ensemble module. Fitting the model to the data is
almost the same as when we used logistic regression and decision trees
clf_rf = RandomForestClassifier(random_state = 0).fit(X_train,

y_train)↪

Note that it takes a bit longer to train the Random Forest since we have to train
many trees (the default setting is 100). We can also make predictions using the
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model and evaluate its performance using the same functions as before
y_pred_rf = clf_rf.predict(X_test)
y_proba_rf = clf_rf.predict_proba(X_test)

print(f"Accuracy: {accuracy_score(y_test, y_pred_rf)}")
print(f"Precision: {precision_score(y_test, y_pred_rf)}")
print(f"Recall: {recall_score(y_test, y_pred_rf)}")
print(f"ROC AUC: {roc_auc_score(y_test, y_proba_rf[:, 1])}")

Accuracy: 0.9999833333333333
Precision: 1.0
Recall: 0.9998093131459517
ROC AUC: 0.9999999993035008

As expected, the Random Forest performs better than the Decision Tree in the
metrics we have used. Now, let’s also check the confusion matrix to see where
we still make mistakes
conf_mat = confusion_matrix(y_test, y_pred_rf, labels=[1,

0]).transpose() # Transpose the sklearn confusion matrix to
match the convention in the lecture

↪

↪

sns.heatmap(conf_mat, annot=True, cmap='Blues', fmt='g',
xticklabels=['Fraud', 'No Fraud'], yticklabels=['Fraud', 'No
Fraud'])

↪

↪

plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.show()
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There are still some false negatives, but the number of false positives has de-
creased compared to the Decision Tree model.

3.6.4 Implementing a XGBoost Classifier
Let’s also have a look at the XGBoost classifier. We can implement the model
using the XGBClassifier class from the xgboost package. Fitting the model
to the data is almost the same as when we used logistic regression, decision
trees, and random forests, even though it is not part of the sklearn package.
This is because the xgboost package is designed to work well with the sklearn
package. Let’s fit the model to the data
clf_xgb = XGBClassifier(random_state = 0).fit(X_train, y_train)

y_pred_xgb = clf_xgb.predict(X_test)
y_proba_xgb = clf_xgb.predict_proba(X_test)

print(f"Accuracy: {accuracy_score(y_test, y_pred_xgb)}")
print(f"Precision: {precision_score(y_test, y_pred_xgb)}")
print(f"Recall: {recall_score(y_test, y_pred_xgb)}")
print(f"ROC AUC: {roc_auc_score(y_test, y_proba_xgb[:, 1])}")

Accuracy: 0.9983366666666667
Precision: 0.9893835616438356



3.6. PYTHON IMPLEMENTATION 79

Recall: 0.9916097784218756
ROC AUC: 0.999973496046352

Let’s also check the confusion matrix to see where we still make mistakes
conf_mat = confusion_matrix(y_test, y_pred_xgb, labels=[1,

0]).transpose() # Transpose the sklearn confusion matrix to
match the convention in the lecture

↪

↪

sns.heatmap(conf_mat, annot=True, cmap='Blues', fmt='g',
xticklabels=['Fraud', 'No Fraud'], yticklabels=['Fraud', 'No
Fraud'])

↪

↪

plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.show()

The XGBoost model seems to perform a bit worse than the Random Forest
model. There are more false negatives and false positives. However, the model
is still very good at detecting fraudulent transactions and has a high ROC
AUC score. Adjusting the hyperparameters of the model might improve its
performance.
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3.6.5 Feature Importance
We can also look at the feature importance of each model. The feature im-
portance is a measure of how much each feature contributes to the model’s
predictions. Let’s start with the Decision Tree model
# Create a DataFrame with the feature importance
df_feature_importance_dt = pd.DataFrame({'Feature':

X_train.columns, 'Importance': clf_dt.feature_importances_})↪

df_feature_importance_dt =
df_feature_importance_dt.sort_values('Importance',
ascending=False)

↪

↪

# Plot the feature importance
plt.barh(df_feature_importance_dt['Feature'],

df_feature_importance_dt['Importance'])↪

plt.xlabel('Importance')
plt.ylabel('Feature')
plt.title('Feature Importance - Decision Tree')
plt.show()

This shows that the ratio_to_median_purchase_price is the most important
feature for determining whether a transaction is fraudulent or not. Whether a
transaction is online, is important as well.

Let’s also look at the feature importance of the Random Forest model
# Create a DataFrame with the feature importance
df_feature_importance_rf = pd.DataFrame({'Feature':

X_train.columns, 'Importance': clf_rf.feature_importances_})↪
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df_feature_importance_rf =
df_feature_importance_rf.sort_values('Importance',
ascending=False)

↪

↪

# Plot the feature importance
plt.barh(df_feature_importance_rf['Feature'],

df_feature_importance_rf['Importance'])↪

plt.xlabel('Importance')
plt.ylabel('Feature')
plt.title('Feature Importance - Random Forest')
plt.show()

Somewhat surprisingly, XGBoost seems to have picked up on different features
than the Decision Tree and Random Forest models. The most important feature
is online_order, followed by ratio_to_median_purchase_price as you can
see from the plot below
# Create a DataFrame with the feature importance
df_feature_importance_xgb = pd.DataFrame({'Feature':

X_train.columns, 'Importance': clf_xgb.feature_importances_})↪

df_feature_importance_xgb =
df_feature_importance_xgb.sort_values('Importance',
ascending=False)

↪

↪

# Plot the feature importance
plt.barh(df_feature_importance_xgb['Feature'],

df_feature_importance_xgb['Importance'])↪

plt.xlabel('Importance')
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plt.ylabel('Feature')
plt.title('Feature Importance - XGBoost')
plt.show()

3.6.6 Permuation Importance
We can also look at the permutation importance of each model. The permu-
tation importance is a measure of how much each feature contributes to the
model’s predictions. The permutation importance is calculated by permuting
the values of each feature and measuring how much the model’s performance
decreases. Let’s start with the Decision Tree model
# Calculate the permutation importance
result_dt = permutation_importance(clf_dt, X_test, y_test,

n_repeats=10, random_state=0)↪

# Create a DataFrame with the permutation importance
df_permutation_importance_dt = pd.DataFrame({'Feature':

X_train.columns, 'Importance': result_dt.importances_mean})↪

df_permutation_importance_dt =
df_permutation_importance_dt.sort_values('Importance',
ascending=False)

↪

↪

# Plot the permutation importance
plt.barh(df_permutation_importance_dt['Feature'],

df_permutation_importance_dt['Importance'])↪

plt.xlabel('Accuracy Decrease')
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plt.ylabel('Feature')
plt.title('Permutation Importance - Decision Tree')
plt.show()

Let’s also look at the permutation importance of the Random Forest model
# Calculate the permutation importance
result_rf = permutation_importance(clf_rf, X_test, y_test,

n_repeats=10, random_state=0)↪

# Create a DataFrame with the permutation importance
df_permutation_importance_rf = pd.DataFrame({'Feature':

X_train.columns, 'Importance': result_rf.importances_mean})↪

df_permutation_importance_rf =
df_permutation_importance_rf.sort_values('Importance',
ascending=False)

↪

↪

# Plot the permutation importance
plt.barh(df_permutation_importance_rf['Feature'],

df_permutation_importance_rf['Importance'])↪

plt.xlabel('Accuracy Decrease')
plt.ylabel('Feature')
plt.title('Permutation Importance - Random Forest')
plt.show()
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Let’s also look at the permutation importance of the XGBoost model
# Calculate the permutation importance
result_xgb = permutation_importance(clf_xgb, X_test, y_test,

n_repeats=10, random_state=0)↪

# Create a DataFrame with the permutation importance
df_permutation_importance_xgb = pd.DataFrame({'Feature':

X_train.columns, 'Importance': result_xgb.importances_mean})↪

df_permutation_importance_xgb =
df_permutation_importance_xgb.sort_values('Importance',
ascending=False)

↪

↪

# Plot the permutation importance
plt.barh(df_permutation_importance_xgb['Feature'],

df_permutation_importance_xgb['Importance'])↪

plt.xlabel('Accuracy Decrease')
plt.ylabel('Feature')
plt.title('Permutation Importance - XGBoost')
plt.show()
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Here the results for the three models are quite similar. The most important
feature is ratio_to_median_purchase_price, followed by online_order.

3.6.7 Conclusions
In this notebook, we have seen how to implement decision trees, random forests,
and XGBoost classifiers in Python. We have also seen how to evaluate the
performance of these models using metrics such as accuracy, precision, recall,
and ROC AUC. We have seen that the Random Forest and XGBoost models
perform better than the Decision Tree model. Furthermore, we looked at the
feature and permutation importance of each model to see which features are
most important for determining whether a transaction is fraudulent or not.
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Chapter 4

Neural Networks

In this chapter, we have a look at neural networks which are a popular machine
learning method. We will cover the basics of neural networks and how they can
be trained.

4.1 What is a Neural Network?
Neural networks are at the core of many cutting-edge machine learning models.
They can be used as both a supervised and unsupervised learning method.
In this course, we will focus on their application in supervised learning where
they are used for both regression and classification tasks. While they are
conceptually not much more difficult to understand than decision trees, a neural
network is not as easy to interpret as a decision tree. For this reason, they
are often called black boxes, meaning that it is not so clear what is happening
inside. Furthermore, neural networks tend to be more difficult to train and
for tabular data, which is the type of structured data that you will typically
encounter, gradient-boosted decision trees tend to perform better. Nevertheless,
since neural networks are what enabled many of the recent advances in AI, they
are an important topic to cover, even if it is only to better understand what has
been driving recent innovations.

It is common to represent neural networks as directed graphs. Figure 4.1 shows
a single-layer feedforward neural network with 𝑁 = 2 inputs, 𝑀 = 3 neurons
in the hidden layer, and a single output. The input layer is connected to the
hidden layer, which is connected to the output layer. For simplicity, we will only
consider neural networks that are feedforward (i.e. their graphs are acyclical),
with dense layers (i.e. each layer is fully connected to the previous), and without
connections that skip layers.

As we will see later on, under certain (relatively weak) conditions

87
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Figure 4.1: A Single-Layer Feedforward Neural Network

• Neural networks are universal approximators (can approximate any
(Borel measurable) function)

• Neural networks break the curse of dimensionality (can handle very
high dimensional functions)

This makes them interesting for a wide range of fields in economics, e.g., quan-
titative macroeconomics or econometrics. However, neural networks are not a
magic bullet, and there are some downsides in terms of the large data require-
ments, interpretability and training difficulty.

4.1.1 Origins of the Term “Neural Network”

Figure 4.2: A biological neuron (Source: Wikipedia)

The term “neural network” originates in attempts to find mathematical repre-
sentations of information processing in biological systems (Bishop 2006). The
biological interpretation not very important for research anymore and one
should not get too hung up on it. However, the interpretation can be useful
when starting to learn about neural networks. Figure 4.2 shows a biological
neuron.
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Figure 4.3: Artificial Neuron

4.2 An Artificial Neuron
Artificial neurons are the basic building blocks of neural networks. Figure 4.3
shows a single artificial neuron. The 𝑁 inputs denoted 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁)′ are
linearly combined into 𝑧 using weights 𝑤 and bias 𝑏

𝑧 = 𝑏 +
𝑁

∑
𝑖=1

𝑤𝑖𝑥𝑖 =
𝑁

∑
𝑖=0

𝑤𝑖𝑥𝑖

where we defined an additional input 𝑥0 = 1 and 𝑤0 = 𝑏.

The linear combination 𝑧 is transformed using an activation function 𝜙(𝑧).

𝑎 = 𝜙(𝑧) = 𝜙 (
𝑁

∑
𝑖=0

𝑤𝑖𝑥𝑖)

The activation function introduces non-linearity into the neural network and
allows it to learn highly non-linear functions. The particular choice of activation
function depends on the application.

This should look familiar to you already. If we set 𝜙(𝑧) = 𝑧, we get a linear
regression model and if we set 𝜙(𝑧) = 1

1+𝑒−𝑧 , we get a logistic regression model.
This is because the basic building block, the artificial neuron, is a generalized
linear model.

4.2.1 Activation Functions
Common activation functions include

• Sigmoid: 𝜙(𝑧) = 1
1+𝑒−𝑧

• Hyperbolic tangent: 𝜙(𝑧) = 𝑡𝑎𝑛ℎ(𝑧)
• Rectified linear unit (ReLU): 𝜙(𝑧) = max(0, 𝑧)
• Softplus: 𝜙(𝑧) = log(1 + 𝑒𝑧)
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Figure 4.4: Activation Functions

ReLU has become popular in deep neural networks in recent years because of
its good performance in these applications. Since economic problems usually
involve smooth functions, softplus can be a good alternative.

4.2.2 A Special Case: Perceptron
Perceptrons were developed in the 1950s and have only one artificial neuron.
Perceptrons use a step function as an activation function

𝜙(𝑧) = {1 if 𝑧 ≥ 0
0 otherwise ,

Perceptrons can be used for basic classification. However, the step function is
usually not used in neural networks because it is not differentiable at 𝑧 = 0
and zero everywhere else. This makes it unsuitable for the back-propagation
algorithm, which is used for determining the network weights.

Mini-Exercise

What would the decision boundary of a perceptron look like if we have
two inputs 𝑥1 and 𝑥2 and the weights 𝑤1 = 1, 𝑤2 = 1, and 𝑏 = −1?

4.3 Building a Neural Network from Artificial
Neurons

We can build a neural network by stacking multiple artificial neurons. For this
reason, it is sometimes also called a multilayer perceptron (MLP). A single-
layer neural network is a linear combination of 𝑀 artificial neurons 𝑎𝑗
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𝑎𝑗 = 𝜙(𝑧𝑗) = 𝜙 (𝑏1
𝑗 +

𝑁
∑
𝑖=1

𝑤1
𝑗𝑖𝑥𝑖)

with the output defined as

𝑔(𝑥; 𝑤) = 𝑏2 +
𝑀

∑
𝑗=1

𝑤2
𝑗 𝑎𝑗

where 𝑁 is the number of inputs, 𝑀 is the number of neurons in the hidden
layer, and 𝑤 are the weights and biases of the network. The width of the neural
network is 𝑀 .

Figure 4.5 shows a single-layer feedforward neural network with 𝑁 = 2 inputs,
𝑀 = 3 neurons in the hidden layer, and a single output. Note that the biases
can be thought of as additional weights that are multiplied by a constant input
of 1.

x1

x2

Input

a1

a2

a3

Hidden

b1, w1

ŷ

Output

b2, w2

Figure 4.5: A Single-Layer Feedforward Neural Network with Biases shown
explicitly

4.4 Relation to Linear Regression
Note that if we use a linear activation function, e.g. 𝜙(𝑥) = 𝑥, the neural
network collapses to a linear regression

𝑦 ≅ 𝑔(𝑥; 𝑤) = �̃�0 +
𝑁

∑
𝑖=1

�̃�𝑖𝑥𝑖

with appropriately defined regression coefficients �̃�.

Recall that in our description of Figure 2.1 we argued that a machine learning
algorithm would automatically turn the slider to find the best fit. This is exactly
what the training algorithm has to do to train a neural network.
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4.5 A Simple Example
Suppose we want to approximate 𝑓(𝑥) = 𝑒𝑥𝑝(𝑥) − 𝑥3 with 3 neurons. The
approximation might be

̂𝑓(𝑥) = 𝑎1 + 𝑎2 − 𝑎3

where

𝑎1 = 𝑚𝑎𝑥(0, −3𝑥 − 1.5)

𝑎2 = 𝑚𝑎𝑥(0, 𝑥 + 1)

𝑎3 = 𝑚𝑎𝑥(0, 3𝑥 − 3)

Our neural network in this case uses ReLU activation functions and has all
weights equal to one in the output layer. Figure 4.6 shows the admittedly poor
approximation of 𝑓(𝑥) by ̂𝑓(𝑥) using this neural network. Given the piecewise
linear nature of the ReLU activation function, the approximation is not very
good. However, with more neurons, we could get a better approximation.

−2 −1 0 1 2

0

2

4

6

8
f(x)

f̂(x)

a1 = max(0,−3x− 1.5)

a2 = max(0, x+ 1)

a3 = max(0, 3x− 3)

Figure 4.6: Approximation by a Neural Network

The HTML version of these notes shows an interactive version of Figure 4.6
where you can adjust the weights of the neural network to approximate a sim-
ple dataset. As you can see there, it is quite tricky to find parameters that
approximate the function well. This is where the training algorithm comes in.
It will automatically adjust the weights to minimize a loss function.
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TensorFlow Playground

If you want to play around with neural networks, you can use the Tensor-
Flow Playground: https://playground.tensorflow.org. It is a web-based
tool that allows you to experiment with neural networks and see how they
learn. Figure 4.7 shows the interface of the TensorFlow Playground.

Figure 4.7: Tesorflow Playground

4.6 Deep Neural Networks
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Figure 4.8: Deep Neural Network

Deep neural networks have more than one hidden layer. The number of
hidden layers is also called the depth of the neural network. Deep neural
networks can learn more complicated things. For simple function approximation,
a single hidden layer is sufficient. Figure 4.8 shows a deep neural network with
two hidden layers.

The first hidden layer consists of 𝑀1 artificial neurons with inputs 𝑥1, 𝑥2, … , 𝑥𝑁

𝑎1
𝑗 = 𝜙 (𝑏1

𝑗 +
𝑁

∑
𝑖=1

𝑤1
𝑗𝑖𝑥𝑖)

The second hidden layer consists of 𝑀2 artificial neurons with inputs
𝑎1

1, 𝑎1
2, … , 𝑎1

𝑀1

https://playground.tensorflow.org
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𝑎2
𝑘 = 𝜙 ⎛⎜

⎝
𝑏2

𝑘 +
𝑀1

∑
𝑗=1

𝑤2
𝑘𝑗𝑎1

𝑗⎞⎟
⎠

After 𝑄 hidden layers, the output is defined as

𝑦 ≅ 𝑔(𝑥; 𝑤) = 𝑏𝑄+1 +
𝑀𝑄

∑
𝑗=1

𝑤𝑄+1
𝑗 𝑎𝑄

𝑗

Note that the activation functions do not need to be the same everywhere. In
principle, we could vary the activation functions even within a layer.

4.7 Universal Approximation and the Curse of
Dimensionality

Recall that we want to approximate an unknown function in supervised
learning tasks

𝑦 = 𝑓(𝑥)

where 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝐾)′ and 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁)′ are vectors. The function
𝑓(𝑥) could stand for many different functions in economics (e.g. a value function,
a policy function, a conditional expectation, a classifier, …).

It turns out that neural networks are universal approximators and break
the curse of dimensionality. The universal approximation theorem by
Hornik, Stinchcombe, and White (1989) states:

A neural network with at least one hidden layer can approximate
any Borel measurable function mapping finite-dimensional spaces to
any desired degree of accuracy.

Breaking the curse of dimensionality (Barron, 1993)

A one-layer NN achieves integrated square errors of order 𝑂(1/𝑀),
where 𝑀 is the number of nodes. In comparison, for series approxi-
mations, the integrated square error is of order 𝑂(1/(𝑀2/𝑁)) where
𝑁 is the dimensions of the function to be approximated.

4.8 Training a Neural Network: Determining
Weights and Biases

We have not yet discussed how to determine the weights and biases. The weights
and biases 𝑤 are selected to minimize a loss function
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𝐸(𝑤; 𝑋, 𝑌 ) = 1
𝑁

𝑁
∑
𝑛=1

𝐸𝑛(𝑤; 𝑥𝑛, 𝑦𝑛)

where 𝑁 refers to the number of input-output pairs that we use for training and
𝐸𝑛(𝑤; 𝑥𝑛, 𝑦𝑛) refers to the loss of an individual pair 𝑛.

For notational simplicity, I will write 𝐸(𝑤) and 𝐸𝑛(𝑤) in the following or in
some cases even omit argument 𝑤.

4.8.1 Choice of Loss Function
The choice of loss function depends on the problem at hand. In regressions, one
often uses a mean squared error (MSE) loss

𝐸𝑛(𝑤; 𝑥𝑛, 𝑦𝑛) = 1
2 ‖𝑔 (𝑥𝑛; 𝑤) − 𝑦𝑛‖2

In classification problems, one often uses a cross-entropy loss

𝐸𝑛(𝑤; 𝑥𝑛, 𝑦𝑛) =
𝐾

∑
𝑘=1

𝑦𝑛𝑘 log(𝑔𝑘(𝑥𝑛; 𝑤))

where 𝑘 refers to 𝑘th class (or 𝑘th element) in the output vector.

4.8.2 Gradient Descent
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Figure 4.9: Gradient Descent



96 CHAPTER 4. NEURAL NETWORKS

The weights and biases are determined by minimizing the loss function using
a gradient descent algorithm. The basic idea is to compute how the loss
changes with the weights 𝑤 and step into the direction that reduces the loss.
Figure 4.9 shows a simple example of a loss function and the gradient descent
algorithm. The basic steps of the algorithm are

1. Initialize weights (e.g. draw from Gaussian distribution)

𝑤(0) ∼ 𝑁(0, 𝐼)
2. Compute the gradient of the loss function with respect to weights

∇𝐸(𝑤(𝑖)) = 1
𝑁

𝑁
∑
𝑛=1

∇𝐸𝑛 (𝑤(𝑖))

3. Update weights (make a small step in the direction of the negative gradi-
ent)

𝑤(𝑖+1) = 𝑤(𝑖) − 𝜂∇𝐸 (𝑤(𝑖))

where 𝜂 > 0 is the learning rate.

4. Repeat Steps 2 and 3 until a terminal condition (e.g. fixed number of
iterations) is reached.

If we use the batch gradient descent algorithm described above, we might get
stuck in a local minimum. To avoid this, we can use

• Stochastic gradient descent: Use only a single observation to compute
the gradient and update the weights for each observation

𝑤(𝑖+1) = 𝑤(𝑖) − 𝜂∇𝐸𝑛 (𝑤(𝑖))

• Minibatch gradient descent: Use a small batch of observations (e.g. 32)
to compute the gradient and update the weights for each minibatch

These algorithms are less likely to get stuck in a shallow local minimum of the
loss function because they are “noisier”. Figure 4.10 shows a comparison of the
different gradient descent algorithms. Minibatch gradient descent is probably
the most commonly used and is also what we will be using in our implementation
in Python.

4.8.3 Backpropagation Algorithm
Computing the gradient seems to be a daunting task since a weight in the
first layer in a deep neural network affects the loss function potentially through
thousands of “paths”. The backpropagation algorithm (Rumelhart et al.,
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Figure 4.10: Comparison of Gradient Descent Types (blue: Full Batch, red:
Minibatch, orange: Stochastic)
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Figure 4.11: Backpropagation Algorithm
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1986) provides an efficient way to evaluate the gradient. The basic idea is to go
backward through the network to evaluate the gradient as shown in Figure 4.11.
If you are interested in the details, I recommend reading the notes by Nielsen
(2019).

4.9 Practical Considerations
From a practical perspective, there are many more things to consider. Often
times it’s beneficial to do some (or all) of the following

• Input/output normalization: (e.g. to have unit variance and mean zero)
can improve the performance of the NN

• Check for overfitting: by splitting the dataset into a training dataset and
a test dataset

• Regularization: to avoid overfitting (e.g. add a term to lose function that
penalizes large weights)

• Adjust the learning rate: 𝜂 during training

We have already discussed some of these topics in the context of other machine
learning algorithms.

4.10 Python Implementation
Let’s have a look at how to implement a neural network in Python.

4.10.1 Implementing the Feedforward Part of a Neural
Network

As a small programming exercise and to improve our understanding of neural
networks, let’s implement the feedforward part of a neural network from scratch.
We will have to calculate the output of the network for some given weights and
biases, as well as some inputs. Let’s start by importing the necessary libraries
import numpy as np

Next, we define the activation function for which we use the sigmoid function
def activation_function(x):

return 1/(1+np.exp(-x)) # sigmoid function

Now, we define the feedforward function which calculates the output of the
neural network given some inputs, weights, and biases. The function takes the
inputs, weights, and biases as arguments and returns the output of the network
def feedforward(inputs, w1, w2, b1, b2):

# Compute the pre-activation values for the first layer
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z = b1 + np.matmul(w1, inputs)

# Compute the post-activation values for the first layer
a = activation_function(z)

# Combine the post-activation values of the first layer to an
output↪

g = b2 + np.matmul(w2, a)

return g

Mathematically, the function computes the following

𝑧 = 𝑏1 + 𝑤1𝑥
𝑎 = 𝜙(𝑧)
𝑔 = 𝑏2 + 𝑤2𝑎
and returns 𝑔 at the end. We have written this using matrix notation to make
it more compact. Remember that node 𝑗 in the hidden layer is given by

𝑧𝑗 = 𝑏1
𝑗 + ∑𝑁

𝑖=1 𝑤1
𝑗𝑖𝑥𝑖

𝑎𝑗 = 𝜙(𝑧𝑗)
and the output of the network is given by

𝑔(𝑥; 𝑤) = 𝑏2 + ∑𝑀
𝑗=1 𝑤2

𝑗 𝑎𝑗.

Let’s test the function with some example inputs, weights and biases
# Define the weights and biases
w1 = np.array([[0.1, 0.2], [0.3, 0.4]]) # 2x2 matrix
w2 = np.array([0.5, 0.6]) # 1-d vector
b1 = np.array([0.1, 0.2]) # 1-d vector
b2 = 0.3

# Define the inputs
inputs = np.array([1, 2]) # 1-d vector

# Compute the output of the network
feedforward(inputs, w1, w2, b1, b2)

np.float64(1.0943291429384328)

To operationalize this, we would also need to define a loss function and an opti-
mization algorithm to update the weights and biases. However, this is beyond
the scope of this course.
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4.10.2 Using Neural Networks in Sci-Kit Learn

Sci-kit learn provides a simple interface to use neural networks. However, it is
not as flexible as the more commonly used PyTorch or TensorFlow. We can reuse
the dataset of credit card transactions from Kaggle.com to demonstrate
how to use neural networks in scikit-learn.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score,

roc_auc_score, recall_score, precision_score, roc_curve↪

pd.set_option('display.max_columns', 50) # Display up to 50
columns↪

from io import BytesIO
from urllib.request import urlopen
from zipfile import ZipFile
import os.path

# Check if the file exists
if not os.path.isfile('data/card_transdata.csv'):

print('Downloading dataset...')

# Define the dataset to be downloaded
zipurl = 'https://www.kaggle.com/api/v1/datasets/download/dh ⌋
anushnarayananr/credit-card-fraud'↪

# Download and unzip the dataset in the data folder
with urlopen(zipurl) as zipresp:

with ZipFile(BytesIO(zipresp.read())) as zfile:
zfile.extractall('data')

print('DONE!')

else:

print('Dataset already downloaded!')

# Load the data
df = pd.read_csv('data/card_transdata.csv')

https://www.kaggle.com/datasets/dhanushnarayananr/credit-card-fraud/data
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# Split the data into training and test sets
X = df.drop('fraud', axis=1) # All variables except `fraud`
y = df['fraud'] # Only our fraud variables
X_train, X_test, y_train, y_test = train_test_split(X, y,

stratify=y, test_size = 0.3, random_state = 42)↪

# Scale the features
def scale_features(scaler, df, col_names, only_transform=False):

# Extract the features we want to scale
features = df[col_names]

# Fit the scaler to the features and transform them
if only_transform:

features = scaler.transform(features.values)
else:

features = scaler.fit_transform(features.values)

# Replace the original features with the scaled features
df[col_names] = features

col_names = ['distance_from_home',
'distance_from_last_transaction',
'ratio_to_median_purchase_price']

↪

↪

scaler = StandardScaler()
scale_features(scaler, X_train, col_names)
scale_features(scaler, X_test, col_names, only_transform=True)

Dataset already downloaded!

Recall that the target variable 𝑦 is fraud, which indicates whether the transac-
tion is fraudulent or not. The other variables are the features 𝑥 of the transac-
tions.

To use a neural network for a classification task, we can use the MLPClassifier
class from scikit-learn. The following code snippet shows how to use a neural
network with one hidden layer with 16 nodes
clf = MLPClassifier(hidden_layer_sizes=(16,), random_state=42,

verbose=False).fit(X_train, y_train)↪

If you would like to use a neural network with multiple hidden layers, you can
specify the number of nodes per hidden layer using the hidden_layer_sizes
parameter. For example, the following code snippet shows how to use a neural
network with two hidden layers, one with 5 nodes and the other with 4 nodes
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clf = MLPClassifier(alpha=1e-5, hidden_layer_sizes=(5,4),
activation='logistic', random_state=42).fit(X_train, y_train)↪

Note that the alpha parameter specifies the regularization strength, the
activation parameter specifies the activation function (by default it uses
relu) and the random_state parameter specifies the seed for the random
number generator (useful for reproducible results).

We can check the loss curve to see how the neural network loss declined during
training
plt.plot(clf.loss_curve_)
plt.title("Loss Curve", fontsize=14)
plt.xlabel('Iterations')
plt.ylabel('Cost')
plt.show()

We can then use the same way to evaluate the neural network performance as
we did for the other ML models
y_pred = clf.predict(X_test)
y_proba = clf.predict_proba(X_test)
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print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
print(f"Precision: {precision_score(y_test, y_pred)}")
print(f"Recall: {recall_score(y_test, y_pred)}")
print(f"ROC AUC: {roc_auc_score(y_test, y_proba[:, 1])}")

Accuracy: 0.9955266666666667
Precision: 0.971747127308582
Recall: 0.9772319896266352
ROC AUC: 0.9996638991577014

The neural network performs substantially better than the logistic regression.
As in the case of the tree-based methods, the ROC AUC score is much closer to
the maximum value of 1 and we have an almost perfect classifier
# Compute the ROC curve
fpr, tpr, thresholds = roc_curve(y_test, y_proba[:, 1])

# Plot the ROC curve
plt.plot(fpr, tpr)
plt.plot([0, 1], [0, 1], linestyle='--', color='grey')
plt.xlabel('False Positive Rate (FPR)')
plt.ylabel('True Positive Rate (TPR)')
plt.title('ROC Curve')
plt.show()
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Let’s also check the confusion matrix to see where we still make mistakes
conf_mat = confusion_matrix(y_test, y_pred, labels=[1,

0]).transpose() # Transpose the sklearn confusion matrix to
match the convention in the lecture

↪

↪

sns.heatmap(conf_mat, annot=True, cmap='Blues', fmt='g',
xticklabels=['Fraud', 'No Fraud'], yticklabels=['Fraud', 'No
Fraud'])

↪

↪

plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.show()
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There are around 270 false negatives, i.e., a fraudulent transaction that we did
not detect. There are also around 980 false positives, i.e., “false alarms”, where
non-fraudulent transactions were classified as fraudulent.

4.10.3 Using Neural Networks in PyTorch
While it is possible to use neural networks in scikit-learn, it is more common
to use PyTorch or TensorFlow for neural networks. PyTorch is a popular deep-
learning library that is widely used in academia and industry. In this section,
we will show how to use PyTorch to build a simple neural network for the same
credit card fraud detection task.

Feel Free to Skip This Section

This section might be a bit more challenging than what we have looked at
previously. If you think that you are not ready for this, feel free to skip
this section. This is mainly meant to be a starting point for those who
are interested in learning more about neural networks.
For a more in-depth introduction to PyTorch, I recommend that you check
out the official PyTorch tutorials. This section, in particular, builds on
the Learning PyTorch with Examples tutorial.

Let’s start by importing the necessary libraries

https://pytorch.org/tutorials/
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
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import torch
from torch.utils.data import DataLoader, TensorDataset

Then, let’s prepare the data for PyTorch. We need to convert the data in our
DataFrame to PyTorch tensors
X_train_tensor = torch.tensor(X_train.values,

dtype=torch.float32)↪

y_train_tensor = torch.tensor(y_train.values, dtype=torch.long)

Note that we also converted the input values to float32 for improved training
speed and the target values to long which is a type of integer (remember our
target y can only take values zero or one). Next, we need to create a DataLoader
object to load the data in mini-batches during the training process
dataset = TensorDataset(X_train_tensor, y_train_tensor)
dataloader = DataLoader(dataset, batch_size=200, shuffle=True)
dataset_size = len(dataloader.dataset)

Next, we define the neural network model using the nn module from PyTorch
model = torch.nn.Sequential(

torch.nn.Linear(7, 16), # 7 input features, 16 nodes in the
hidden layer↪

torch.nn.ReLU(), # ReLU activation function
torch.nn.Linear(16, 2) # 16 nodes in the hidden layer, 2
output nodes (fraud or no fraud)↪

)

We also need to define the loss function and the optimizer. We will use the
cross-entropy loss function and the Adam optimizer
loss_fn = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3,

weight_decay=1e-5) # Adam optimizer with learning rate of
0.001 and L2 regularization (analogous to alpha in
scikit-learn)

↪

↪

↪

We can now train the neural network using the following code snippet
for epoch in range(80):

# Loop over batches in an epoch using DataLoader
for id_batch, (X_batch, y_batch) in enumerate(dataloader):

# Compute the predicted y using the neural network model
with the current weights↪
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y_batch_pred = model(X_batch)

# Compute the loss
loss = loss_fn(y_batch_pred, y_batch)

# Reset the gradients of the loss function to zero
optimizer.zero_grad()

# Compute the gradient of the loss with respect to model
parameters↪

loss.backward()

# Update the weights by taking a "step" in the direction
that reduces the loss↪

optimizer.step()

if epoch % 10 == 9:
print(f"Epoch {epoch} loss: {loss.item():>7f}")

Epoch 9 loss: 0.024499
Epoch 19 loss: 0.008713
Epoch 29 loss: 0.016122
Epoch 39 loss: 0.007585
Epoch 49 loss: 0.005461
Epoch 59 loss: 0.020942
Epoch 69 loss: 0.016723
Epoch 79 loss: 0.007653

Note that here we are updating the model weights for each mini-batch in the
dataset and go over the whole dataset 80 times (epochs). We print the loss
every epoch to see how the loss decreases over time.

The following snippet shows how to use full-batch gradient descent instead of
mini-batch gradient descent
for epoch in range(2000):

# Compute the predicted y using the neural network model with
the current weights↪

y_epoch_pred = model(X_train_tensor)

# Compute the loss
loss = loss_fn(y_epoch_pred, y_train_tensor)

# Reset the gradients of the loss function to zero
optimizer.zero_grad()
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# Compute the gradient of the loss with respect to model
parameters↪

loss.backward()

# Update the weights by taking a "step" in the direction that
reduces the loss↪

optimizer.step()

# Print the loss every 100 epochs
if epoch % 100 == 99:

print(f"Epoch {epoch} loss: {loss.item():>7f}")

Epoch 99 loss: 0.009982
Epoch 199 loss: 0.009945
Epoch 299 loss: 0.009928
Epoch 399 loss: 0.009920
Epoch 499 loss: 0.009914
Epoch 599 loss: 0.009910
Epoch 699 loss: 0.009907
Epoch 799 loss: 0.009904
Epoch 899 loss: 0.009901
Epoch 999 loss: 0.009899
Epoch 1099 loss: 0.009897
Epoch 1199 loss: 0.009895
Epoch 1299 loss: 0.009893
Epoch 1399 loss: 0.009891
Epoch 1499 loss: 0.009890
Epoch 1599 loss: 0.009888
Epoch 1699 loss: 0.009886
Epoch 1799 loss: 0.009885
Epoch 1899 loss: 0.009883
Epoch 1999 loss: 0.009881

Note that in this version we are updating the model weights 2000 times (epochs)
and printing the loss every 100 epochs. We can now evaluate the model on the
test set
X_test_tensor = torch.tensor(X_test.values, dtype=torch.float32)
y_pred = torch.argmax(model(X_test_tensor), dim=1).numpy()

print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
print(f"Precision: {precision_score(y_test, y_pred)}")
print(f"Recall: {recall_score(y_test, y_pred)}")

Accuracy: 0.9965833333333334
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Precision: 0.9775587566338135
Recall: 0.9834865184394188

Note that for simplicity we are reusing the sci-kit learn metrics to evaluate the
model.

However, our neural network trained in PyTorch does not perform exactly the
same as the neural network trained in scikit-learn. This is likely because of
different hyperparameters or different initializations of the weights. In practice,
it is common to experiment with different hyperparameters to find the best
model or to use grid search and cross-validation to try many values and find the
best-performing ones.

4.10.4 Conclusions
In this chapter, we have learned about neural networks, which are the foun-
dation of deep learning. We have seen how to implement parts of a simple
neural network from scratch and how to use neural networks in scikit-learn and
PyTorch.
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Chapter 5

Additional Methods

In this chapter, we will introduce some additional methods that are commonly
used in machine learning. These methods include the K-Nearest Neighbors
(KNN) algorithm and the K-means clustering algorithm.

5.1 K-Nearest Neighbors
The K-Nearest Neighbors (KNN) algorithm is a simple and intuitive method for
classification and regression meaning that it belongs to the class of supervised
learning methods. The KNN algorithm uses the 𝐾 nearest neighbors of a data
point to make a prediction. For example, in the case of a regression task, the
prediction ̂𝑦 for a new data point 𝑥 is

̂𝑦 = 1
𝐾 ∑

𝑥𝑖∈𝑁𝑘(𝑥)
𝑦𝑖

i.e., the average of the 𝐾 nearest neighbors of 𝑥. In the case of a classification
task, the prediction ̂𝑦 is the majority class of the 𝐾 nearest neighbors of 𝑥.

Figure 5.1 shows an example of the K-Nearest Neighbors algorithm applied to
a dataset with two classes. The decision boundary is shown as a shaded area.

5.2 K-means Clustering
K-means is a method that is used for finding clusters in a set of unlabeled data
meaning that it is an unsupervised learning method. For the algorithm to
work, one has to choose a fixed number of clusters 𝐾 for which the algorithm will
then try to find the cluster centers (i.e., the means) using an iterative procedure.

111
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Figure 5.1: K-Nearest Neighbors Classification with 𝐾 = 5 (Classification shown
as Shaded Area)
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The basic algorithm proceeds as follows given a set of initial guesses for the
𝐾 cluster centers:

1. Assign each data point to the nearest cluster center
2. Recompute the cluster centers as the mean of the data points assigned to

each cluster

The algorithm iterates over these two steps until the cluster centers do not
change or the change is below a certain threshold. As an initial guess, one can
use, for example, 𝐾 randomly chosen observations as cluster centers.

We need some measure of disimilarity (or distance) to assign data points to
the nearest cluster center. The most common choice is the Euclidean distance.
The squared Euclidean distance between two points 𝑥 and 𝑦 in 𝑝-dimensional
space is defined as

𝑑(𝑥𝑖, 𝑥𝑗) =
𝑝

∑
𝑛=1

(𝑥𝑖𝑛 − 𝑥𝑗𝑛)2 = ‖𝑥𝑖 − 𝑥𝑗‖2

where 𝑥𝑖𝑛 and 𝑥𝑗𝑛 are the 𝑛-th feature of the 𝑖-th and 𝑗-th observation in our
dataset, respectively.

The objective function of the K-means algorithm is to minimize the sum of
squared distances between the data points and their respective cluster centers

min
𝐶,{𝑚𝑘}𝐾

𝑘=1

𝐾
∑
𝑘=1

∑
𝐶(𝑖)=𝑘

‖𝑥𝑖 − 𝑚𝑘‖2

where second sum sums up over all elements 𝑖 in cluster 𝑘 and 𝜇𝑘 is the cluster
center of cluster 𝑘.

The K-means algorithm is sensitive to the initial choice of cluster centers.
To mitigate this, one can run the algorithm multiple times with different initial
guesses and choose the solution with the smallest objective function value.

The scale of the data can also have an impact on the clustering results. There-
fore, it is often recommended to standardize the data before applying the
K-means algorithm. Furthermore, the Euclidean distance is not well suited
for binary or categorical data. Therefore, one should only use the K-means
algorithm for continuous data.

How to choose the number of clusters 𝐾? One can use the so-called elbow
method to find a suitable number of clusters. The elbow method plots the
sum of squared distances (i.e., the objective function of K-means) for different
𝐾. The idea is to choose the number of clusters at the “elbow” of the curve,
i.e., the point where the curve starts to flatten out. Note that the curve starts
to flatten out when adding more clusters does not significantly reduce the sum
of squared distances anymore. This usually happens to be the case when the
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number of clusters exceeds the “true” number of clusters in the data. However,
this is just a heuristic and it might not always be easy to identify the “elbow”
in the curve.
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Figure 5.2: K-Means Clusters and Elbow Method

Figure 5.2 shows an example of the K-means clustering algorithm applied to
a dataset with 3 clusters. The left-hand side shows the clusters found by the
K-means algorithm, while the right-hand side shows the elbow method to find
the optimal number of clusters. The elbow method suggests that the optimal
number of clusters is 3, which is the true number of clusters in the dataset.

5.3 Python Implementation
Let’s have a look at how to implement KNN and K-means in Python. Again,
we need to first import the required packages and load the data
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.cluster import KMeans
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score,

roc_auc_score, recall_score, precision_score, roc_curve↪

pd.set_option('display.max_columns', 50) # Display up to 50
columns↪

from io import BytesIO
from urllib.request import urlopen
from zipfile import ZipFile
import os.path
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# Check if the file exists
if not os.path.isfile('data/card_transdata.csv'):

print('Downloading dataset...')

# Define the dataset to be downloaded
zipurl = 'https://www.kaggle.com/api/v1/datasets/download/dh ⌋
anushnarayananr/credit-card-fraud'↪

# Download and unzip the dataset in the data folder
with urlopen(zipurl) as zipresp:

with ZipFile(BytesIO(zipresp.read())) as zfile:
zfile.extractall('data')

print('DONE!')

else:

print('Dataset already downloaded!')

# Load the data
df = pd.read_csv('data/card_transdata.csv')

Dataset already downloaded!

This is the dataset of credit card transactions from Kaggle.com which we
have used before. Recall that the target variable 𝑦 is fraud, which indicates
whether the transaction is fraudulent or not. The other variables are the features
𝑥 of the transactions.
df.head(20)

distance_from_home distance_from_last_transaction ratio_to_median_purchase_price repeat_retailer used_chip used_pin_number online_order fraud
0 57.877857 0.311140 1.945940 1.0 1.0 0.0 0.0 0.0
1 10.829943 0.175592 1.294219 1.0 0.0 0.0 0.0 0.0
2 5.091079 0.805153 0.427715 1.0 0.0 0.0 1.0 0.0
3 2.247564 5.600044 0.362663 1.0 1.0 0.0 1.0 0.0
4 44.190936 0.566486 2.222767 1.0 1.0 0.0 1.0 0.0
5 5.586408 13.261073 0.064768 1.0 0.0 0.0 0.0 0.0
6 3.724019 0.956838 0.278465 1.0 0.0 0.0 1.0 0.0
7 4.848247 0.320735 1.273050 1.0 0.0 1.0 0.0 0.0
8 0.876632 2.503609 1.516999 0.0 0.0 0.0 0.0 0.0
9 8.839047 2.970512 2.361683 1.0 0.0 0.0 1.0 0.0
10 14.263530 0.158758 1.136102 1.0 1.0 0.0 1.0 0.0

https://www.kaggle.com/datasets/dhanushnarayananr/credit-card-fraud/data
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distance_from_home distance_from_last_transaction ratio_to_median_purchase_price repeat_retailer used_chip used_pin_number online_order fraud
11 13.592368 0.240540 1.370330 1.0 1.0 0.0 1.0 0.0
12 765.282559 0.371562 0.551245 1.0 1.0 0.0 0.0 0.0
13 2.131956 56.372401 6.358667 1.0 0.0 0.0 1.0 1.0
14 13.955972 0.271522 2.798901 1.0 0.0 0.0 1.0 0.0
15 179.665148 0.120920 0.535640 1.0 1.0 1.0 1.0 0.0
16 114.519789 0.707003 0.516990 1.0 0.0 0.0 0.0 0.0
17 3.589649 6.247458 1.846451 1.0 0.0 0.0 0.0 0.0
18 11.085152 34.661351 2.530758 1.0 0.0 0.0 1.0 0.0
19 6.194671 1.142014 0.307217 1.0 0.0 0.0 0.0 0.0

df.describe()

distance_from_home distance_from_last_transaction ratio_to_median_purchase_price repeat_retailer used_chip used_pin_number online_order fraud
count 1000000.000000 1000000.000000 1000000.000000 1000000.000000 1000000.000000 1000000.000000 1000000.000000 1000000.000000
mean 26.628792 5.036519 1.824182 0.881536 0.350399 0.100608 0.650552 0.087403
std 65.390784 25.843093 2.799589 0.323157 0.477095 0.300809 0.476796 0.282425
min 0.004874 0.000118 0.004399 0.000000 0.000000 0.000000 0.000000 0.000000
25% 3.878008 0.296671 0.475673 1.000000 0.000000 0.000000 0.000000 0.000000
50% 9.967760 0.998650 0.997717 1.000000 0.000000 0.000000 1.000000 0.000000
75% 25.743985 3.355748 2.096370 1.000000 1.000000 0.000000 1.000000 0.000000
max 10632.723672 11851.104565 267.802942 1.000000 1.000000 1.000000 1.000000 1.000000

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 8 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 distance_from_home 1000000 non-null float64
1 distance_from_last_transaction 1000000 non-null float64
2 ratio_to_median_purchase_price 1000000 non-null float64
3 repeat_retailer 1000000 non-null float64
4 used_chip 1000000 non-null float64
5 used_pin_number 1000000 non-null float64
6 online_order 1000000 non-null float64
7 fraud 1000000 non-null float64
dtypes: float64(8)
memory usage: 61.0 MB
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5.3.1 Data Preprocessing

Since we have already explored the dataset in the previous notebook, we can
skip that part and move directly to the data preprocessing.

We will again split the data into training and test sets using the train_test_split
function
X = df.drop('fraud', axis=1) # All variables except `fraud`
y = df['fraud'] # Only our fraud variables
X_train, X_test, y_train, y_test = train_test_split(X, y,

stratify=y, test_size = 0.3, random_state = 42)↪

Then we can do the feature scaling to ensure our non-binary variables have
mean zero and variance 1
def scale_features(scaler, df, col_names, only_transform=False):

# Extract the features we want to scale
features = df[col_names]

# Fit the scaler to the features and transform them
if only_transform:

features = scaler.transform(features.values)
else:

features = scaler.fit_transform(features.values)

# Replace the original features with the scaled features
df[col_names] = features

# Define which features to scale with the StandardScaler and
MinMaxScaler↪

for_standard_scaler = [
'distance_from_home',
'distance_from_last_transaction',
'ratio_to_median_purchase_price',

]

# Apply the standard scaler (Note: we use the same mean and std
for scaling the test set)↪

standard_scaler = StandardScaler()
scale_features(standard_scaler, X_train, for_standard_scaler)
scale_features(standard_scaler, X_test, for_standard_scaler,

only_transform=True)↪
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5.3.2 K-Nearest Neighbors (KNN)

We can now implement the KNN algorithm using the KNeighborsClassifier
class from the sklearn.neighbors module. We will use the default value of
𝑘 = 5 for the number of neighbors.
clf_knn = KNeighborsClassifier().fit(X_train, y_train)

We can now use the trained model to make predictions on the test set and
evaluate the model performance using the confusion matrix and accuracy score.
y_pred_knn = clf_knn.predict(X_test)
y_proba_knn = clf_knn.predict_proba(X_test)

print(f"Accuracy: {accuracy_score(y_test, y_pred_knn)}")
print(f"Precision: {precision_score(y_test, y_pred_knn)}")
print(f"Recall: {recall_score(y_test, y_pred_knn)}")
print(f"ROC AUC: {roc_auc_score(y_test, y_proba_knn[:, 1])}")

Accuracy: 0.9987
Precision: 0.9935419771485345
Recall: 0.991571641051066
ROC AUC: 0.9997341251520317

This seems to work quite well with a ROC AUC of 0.9997. We seem to have
an almost perfect classifier. We can also plot the ROC curve to visualize the
performance of the classifier
# Compute the ROC curve
fpr, tpr, thresholds = roc_curve(y_test, y_proba_knn[:, 1])

# Plot the ROC curve
plt.plot(fpr, tpr)
plt.plot([0, 1], [0, 1], linestyle='--', color='grey')
plt.xlabel('False Positive Rate (FPR)')
plt.ylabel('True Positive Rate (TPR)')
plt.title('ROC Curve')
plt.show()
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Let’s also check the confusion matrix to see where we still make mistakes
conf_mat = confusion_matrix(y_test, y_pred_knn, labels=[1,

0]).transpose() # Transpose the sklearn confusion matrix to
match the convention in the lecture

↪

↪

sns.heatmap(conf_mat, annot=True, cmap='Blues', fmt='g',
xticklabels=['Fraud', 'No Fraud'], yticklabels=['Fraud', 'No
Fraud'])

↪

↪

plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.show()
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5.3.3 K-Means
This is the first example of an unsupervised learning algorithm meaning that
we will ignore the labels in the training set. We will use the KMeans class
from the sklearn.cluster module to implement the K-means algorithm. Note
that we can not use categorical variables in the K-means algorithm, so we will
only use the continuous variables in this example. Furthermore, to simplify
interpretability we will only use two variables
continuous_variables = ['distance_from_home',

'distance_from_last_transaction',
'ratio_to_median_purchase_price']

↪

↪

n_clusters=2
kmeans = KMeans(n_clusters=n_clusters, random_state=42,

n_init=10).fit(X_train[continuous_variables])↪

We can check the cluster centers using the cluster_centers_ attribute of the
trained model
kmeans.cluster_centers_

array([[-2.01860525e-05, -1.55050548e-03, -1.68843633e-01],
[ 3.66287246e-04, 2.81347918e-02, 3.06376244e+00]])
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Since we only have two variables we can easily visualize the clusters using a scat-
ter plot. We first need to unscale the data to make the plot more interpretable
# Unscale the data
X_train_unscaled = X_train.copy()
X_train_unscaled[for_standard_scaler] = standard_scaler.inverse_ ⌋

transform(X_train[for_standard_scaler])↪

X_test_unscaled = X_test.copy()
X_test_unscaled[for_standard_scaler] = standard_scaler.inverse_t ⌋

ransform(X_test[for_standard_scaler])↪

cluster_centers =
standard_scaler.inverse_transform(kmeans.cluster_centers_)↪

Then, we can create the scatter plot to see what the clusters look like
_, ax = plt.subplots()
scatter = ax.scatter(X_train_unscaled[continuous_variables[0]],

X_train_unscaled[continuous_variables[2]], c=kmeans.labels_)↪

scatter = ax.scatter(cluster_centers[:, 0], cluster_centers[:,
2], c='black', marker='x', s=100, label = 'K-means Centers')↪

ax.set(xlabel=continuous_variables[0],
ylabel=continuous_variables[2])↪

ax.set_xscale('log')
ax.set_yscale('log')
ax.legend()
plt.title('K-Means Clusters')
plt.show()
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Note that the centers might look a bit off because we are using log scales on the
x and y-axis. In the other dimension, we don’t have such a nice separation of
the clusters
_, ax = plt.subplots()
scatter = ax.scatter(X_train_unscaled[continuous_variables[0]],

X_train_unscaled[continuous_variables[1]], c=kmeans.labels_)↪

scatter = ax.scatter(cluster_centers[:, 0], cluster_centers[:,
1], c='black', marker='x', s=100, label = 'K-means Centers')↪

ax.set(xlabel=continuous_variables[0],
ylabel=continuous_variables[1])↪

ax.set_xscale('log')
ax.set_yscale('log')
ax.legend()
plt.title('K-Means Clusters')
plt.show()
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But what do these two clusters represent? We can check the mean of the target
variable fraud for each cluster to get an idea of what the clusters represent
X_train_unscaled['cluster'] = kmeans.labels_
X_train_unscaled.query('cluster == 1').describe().T

count mean std min 25% 50% 75% max
distance_from_home 36679.0 26.727628 63.910540 0.032026 3.895800 10.098703 25.760347 3353.002414
distance_from_last_transaction 36679.0 5.780037 71.723799 0.000966 0.296198 1.000376 3.357238 11851.104565
ratio_to_median_purchase_price 36679.0 10.470287 6.811775 2.209891 6.871869 8.384989 11.466176 267.802942
repeat_retailer 36679.0 0.879522 0.325524 0.000000 1.000000 1.000000 1.000000 1.000000
used_chip 36679.0 0.351754 0.477524 0.000000 0.000000 0.000000 1.000000 1.000000
used_pin_number 36679.0 0.102756 0.303645 0.000000 0.000000 0.000000 0.000000 1.000000
online_order 36679.0 0.649063 0.477270 0.000000 0.000000 1.000000 1.000000 1.000000
cluster 36679.0 1.000000 0.000000 1.000000 1.000000 1.000000 1.000000 1.000000

X_train_unscaled.query('cluster == 0').describe().T
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count mean std min 25% 50% 75% max
distance_from_home 663321.0 26.694233 66.097113 0.004874 3.880252 9.969293 25.807909 10632.723672
distance_from_last_transaction 663321.0 4.988030 22.054240 0.000118 0.296681 0.998050 3.351187 3437.278746
ratio_to_median_purchase_price 663321.0 1.347721 1.226094 0.004399 0.455014 0.929070 1.838841 5.921543
repeat_retailer 663321.0 0.881468 0.323238 0.000000 1.000000 1.000000 1.000000 1.000000
used_chip 663321.0 0.350518 0.477133 0.000000 0.000000 0.000000 1.000000 1.000000
used_pin_number 663321.0 0.100512 0.300682 0.000000 0.000000 0.000000 0.000000 1.000000
online_order 663321.0 0.650643 0.476767 0.000000 0.000000 1.000000 1.000000 1.000000
cluster 663321.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

y_train[X_train_unscaled['cluster'] == 0].mean()

0.057474435454327545

y_train[X_train_unscaled['cluster'] == 1].mean()

0.6286430927778838

There does not seem to be a clear difference between the two clusters except
for the difference in the mean of the ratio_to_median_purchase_price
variable. This is not necessarily very surprising since we only used three
variables in the clustering algorithm. However, due to the correlation of
ratio_to_median_purchase_price we have more fraudulent transactions
in one cluster than the other. To be able to carry out a more meaningful
clustering analysis using K-means we would need a different dataset with more
quantitative variables. Nevertheless, let’s also check the elbow method to how
many clusters it would suggest
interias = [KMeans(n_clusters=n, n_init=10).fit(X_train).inertia_

for n in range(1, 11)]↪

_, ax = plt.subplots()
ax.plot(range(1, 11), interias, marker='o')
ax.set(xlabel='Number of clusters', ylabel='Objective Function')
plt.title('Elbow Method')
plt.show()



5.3. PYTHON IMPLEMENTATION 125

There does not seem to be a clear elbow in the plot. Finally, we can also make
predictions on the test set using the trained K-means model
kmeans.predict(X_test[continuous_variables])

array([0, 0, 0, ..., 0, 0, 1], dtype=int32)

This assigns each observation in the test set to one of the two clusters.

5.3.4 Conclusions
We have seen how to implement a KNN algorithm for classification and a K-
means algorithm for clustering in Python using the sklearn package. We have
also seen how to evaluate the performance of the KNN algorithm using the
confusion matrix, accuracy score, precision, recall, and ROC AUC. We have
also seen how to visualize the clusters created by the K-means algorithm and
tried to apply the ellow method.
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Part II

Applications
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Chapter 6

Loan Default Prediction

The following application is inspired by the empirical example in “Measuring
the model risk-adjusted performance of machine learning algorithms in credit
default prediction” by Alonso Robisco and Carbó Martínez (2022). However,
since we are not interested in model risk-adjusted performance, the application
will purely focus on the implementation of machine learning algorithms for loan
default prediction.

6.1 Problem Setup
The dataset that we will be using was used in the Kaggle competition “Give Me
Some Credit”. The description of the competition reads as follows:

Banks play a crucial role in market economies. They decide who
can get finance and on what terms and can make or break invest-
ment decisions. For markets and society to function, individuals and
companies need access to credit.

Credit scoring algorithms, which make a guess at the probability of
default, are the method banks use to determine whether or not a
loan should be granted. This competition requires participants to
improve on the state of the art in credit scoring, by predicting the
probability that somebody will experience financial distress in the
next two years.

The goal of this competition is to build a model that borrowers can
use to help make the best financial decisions.

Historical data are provided on 250,000 borrowers and the prize pool
is $5,000 ($3,000 for first, $1,500 for second and $500 for third).
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Unfortunately, there won’t be any prize money today. However, the experi-
ence that you can gain from working through an application like this can be
invaluable. So, in a way, you are still winning!

6.2 Dataset
Let’s download the dataset automatically, unzip it, and place it in a folder called
data if you haven’t done so already
from io import BytesIO
from urllib.request import urlopen
from zipfile import ZipFile
import os.path

# Check if the file exists
if not os.path.isfile('data/Data Dictionary.xl') or not

os.path.isfile('data/cs-training.csv'):↪

print('Downloading dataset...')

# Define the dataset to be downloaded
zipurl = 'https://www.kaggle.com/api/v1/datasets/download/br ⌋
ycecf/give-me-some-credit-dataset'↪

# Download and unzip the dataset in the data folder
with urlopen(zipurl) as zipresp:

with ZipFile(BytesIO(zipresp.read())) as zfile:
zfile.extractall('data')

print('DONE!')

else:

print('Dataset already downloaded!')

Downloading dataset...
DONE!

Then, we can have a look at the data dictionary that is provided with the dataset.
This will give us an idea of the variables that are available in the dataset and
what they represent
import pandas as pd
data_dict = pd.read_excel('data/Data Dictionary.xls', header=1)
data_dict.style.hide()
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Table 6.1

Variable Name Description Type
SeriousDlqin2yrs Person experienced 90 days past due delinquency or worse Y/N
RevolvingUtilizationOfUnsecuredLines Total balance on credit cards and personal lines of credit except real estate and no installment debt like car loans divided by the sum of credit limits percentage
age Age of borrower in years integer
NumberOfTime30-59DaysPastDueNotWorse Number of times borrower has been 30-59 days past due but no worse in the last 2 years. integer
DebtRatio Monthly debt payments, alimony,living costs divided by monthy gross income percentage
MonthlyIncome Monthly income real
NumberOfOpenCreditLinesAndLoans Number of Open loans (installment like car loan or mortgage) and Lines of credit (e.g. credit cards) integer
NumberOfTimes90DaysLate Number of times borrower has been 90 days or more past due. integer
NumberRealEstateLoansOrLines Number of mortgage and real estate loans including home equity lines of credit integer
NumberOfTime60-89DaysPastDueNotWorse Number of times borrower has been 60-89 days past due but no worse in the last 2 years. integer
NumberOfDependents Number of dependents in family excluding themselves (spouse, children etc.) integer

The variable 𝑦 that we want to predict is SeriousDlqin2yrs which indicates
whether a person has been 90 days past due on a loan payment (serious delin-
quency) in the past two years. This target variable is 1 if the loan defaults
(i.e., serious delinquency occured) and 0 if the loan does not default (i.e., no
serious delinquency occured) . The other variables are features that we can use
to predict this target variable such as the age of the borrower and the monthly
income of the borrower.

6.3 Putting the Problem into the Context of the
Course

Given the description of the competition and the dataset, we can see that this
is a supervised learning problem. We have a target variable that we want
to predict, and we have features that we can use to predict this target variable.
The target variable is binary, i.e., it can take two values: 0 or 1. The value 0
indicates that the loan will not default, while the value 1 indicates that the loan
will default. Thus, this is a binary classification problem.

6.4 Setting up the Environment
We will start by setting up the environment by importing the necessary libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

and loading the dataset
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df = pd.read_csv('data/cs-training.csv')

Let’s also download some precomputed models that we will use later on
for file_name in ['clf_nn.joblib', 'clf_nn2.joblib']:

if not os.path.isfile(file_name):

print(f'Downloading {file_name}...')

# Generate the download link
url = f'https://github.com/jmarbet/data-science-course/r ⌋

aw/main/notebooks/{file_name}'↪

# Download the file
with urlopen(url) as response, open(file_name, 'wb') as

out_file:↪

data = response.read()
out_file.write(data)

print('DONE!')

else:

print(f'{file_name} already downloaded!')

clf_nn.joblib already downloaded!
clf_nn2.joblib already downloaded!

6.5 Data Preprocessing
The dataset is now loaded into a pandas DataFrame. Let’s have a look at the
first few rows of the dataset to get an idea of what the data looks like.
df.head()

Unnamed: 0 SeriousDlqin2yrs RevolvingUtilizationOfUnsecuredLines age NumberOfTime30-59DaysPastDueNotWorse DebtRatio MonthlyIncome NumberOfOpenCreditLinesAndLoans NumberOfTimes90DaysLate NumberRealEstateLoansOrLines NumberOfTime60-89DaysPastDueNotWorse NumberOfDependents
0 1 1 0.766127 45 2 0.802982 9120.0 13 0 6 0 2.0
1 2 0 0.957151 40 0 0.121876 2600.0 4 0 0 0 1.0
2 3 0 0.658180 38 1 0.085113 3042.0 2 1 0 0 0.0
3 4 0 0.233810 30 0 0.036050 3300.0 5 0 0 0 0.0
4 5 0 0.907239 49 1 0.024926 63588.0 7 0 1 0 0.0

The column Unnamed: 0 seems to be a superfluous index column that we could
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drop. Let’s do that
df = df.drop('Unnamed: 0', axis=1)

Furthermore, the order of the column names in the dataset is not very intuitive.
Let’s reorder the columns in the dataset
orderedList = [

'SeriousDlqin2yrs',
'age',
'NumberOfDependents',
'MonthlyIncome',
'DebtRatio',
'RevolvingUtilizationOfUnsecuredLines',
'NumberOfOpenCreditLinesAndLoans',
'NumberRealEstateLoansOrLines',
'NumberOfTime30-59DaysPastDueNotWorse',
'NumberOfTime60-89DaysPastDueNotWorse',
'NumberOfTimes90DaysLate'

]

df = df.loc[:, orderedList]

Let’s also have a look at the data types of the columns in the dataset and
whether there are any missing values
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150000 entries, 0 to 149999
Data columns (total 11 columns):
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 SeriousDlqin2yrs 150000 non-null int64
1 age 150000 non-null int64
2 NumberOfDependents 146076 non-null float64
3 MonthlyIncome 120269 non-null float64
4 DebtRatio 150000 non-null float64
5 RevolvingUtilizationOfUnsecuredLines 150000 non-null float64
6 NumberOfOpenCreditLinesAndLoans 150000 non-null int64
7 NumberRealEstateLoansOrLines 150000 non-null int64
8 NumberOfTime30-59DaysPastDueNotWorse 150000 non-null int64
9 NumberOfTime60-89DaysPastDueNotWorse 150000 non-null int64
10 NumberOfTimes90DaysLate 150000 non-null int64

dtypes: float64(4), int64(7)
memory usage: 12.6 MB

Note that the column MonthlyIncome and NumberOfDependents seem to have
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missing values. Before we drop these missing values or impute them, let’s have
a look at the distribution of our target variable SeriousDlqin2yrs

df['SeriousDlqin2yrs'].value_counts(normalize=True)

SeriousDlqin2yrs
0 0.93316
1 0.06684
Name: proportion, dtype: float64

As with the example that we have seen during one of our previous lectures,
the dataset seems to be quite imbalanced. Only about 6.7% of the loans have
defaulted. This is something that we need to keep in mind when treating the
missing values and when building our models.

Let’s see what happens to the distribution of the target variable if we drop the
missing values
df.dropna().value_counts("SeriousDlqin2yrs", normalize=True)

SeriousDlqin2yrs
0 0.930514
1 0.069486
Name: proportion, dtype: float64

It seems to have almost no impact on the distribution of the target variable.
This is good news. Let’s compare some other statistics of the dataset before
and after dropping the missing values
df.describe().T

count mean std min 25% 50% 75% max
SeriousDlqin2yrs 150000.0 0.066840 0.249746 0.0 0.000000 0.000000 0.000000 1.0
age 150000.0 52.295207 14.771866 0.0 41.000000 52.000000 63.000000 109.0
NumberOfDependents 146076.0 0.757222 1.115086 0.0 0.000000 0.000000 1.000000 20.0
MonthlyIncome 120269.0 6670.221237 14384.674215 0.0 3400.000000 5400.000000 8249.000000 3008750.0
DebtRatio 150000.0 353.005076 2037.818523 0.0 0.175074 0.366508 0.868254 329664.0
RevolvingUtilizationOfUnsecuredLines 150000.0 6.048438 249.755371 0.0 0.029867 0.154181 0.559046 50708.0
NumberOfOpenCreditLinesAndLoans 150000.0 8.452760 5.145951 0.0 5.000000 8.000000 11.000000 58.0
NumberRealEstateLoansOrLines 150000.0 1.018240 1.129771 0.0 0.000000 1.000000 2.000000 54.0
NumberOfTime30-59DaysPastDueNotWorse 150000.0 0.421033 4.192781 0.0 0.000000 0.000000 0.000000 98.0
NumberOfTime60-89DaysPastDueNotWorse 150000.0 0.240387 4.155179 0.0 0.000000 0.000000 0.000000 98.0
NumberOfTimes90DaysLate 150000.0 0.265973 4.169304 0.0 0.000000 0.000000 0.000000 98.0

df.dropna().describe().T
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count mean std min 25% 50% 75% max
SeriousDlqin2yrs 120269.0 0.069486 0.254280 0.0 0.000000 0.000000 0.000000 1.0
age 120269.0 51.289792 14.426684 0.0 40.000000 51.000000 61.000000 103.0
NumberOfDependents 120269.0 0.851832 1.148391 0.0 0.000000 0.000000 2.000000 20.0
MonthlyIncome 120269.0 6670.221237 14384.674215 0.0 3400.000000 5400.000000 8249.000000 3008750.0
DebtRatio 120269.0 26.598777 424.446457 0.0 0.143388 0.296023 0.482559 61106.5
RevolvingUtilizationOfUnsecuredLines 120269.0 5.899873 257.040685 0.0 0.035084 0.177282 0.579428 50708.0
NumberOfOpenCreditLinesAndLoans 120269.0 8.758475 5.172835 0.0 5.000000 8.000000 11.000000 58.0
NumberRealEstateLoansOrLines 120269.0 1.054519 1.149273 0.0 0.000000 1.000000 2.000000 54.0
NumberOfTime30-59DaysPastDueNotWorse 120269.0 0.381769 3.499234 0.0 0.000000 0.000000 0.000000 98.0
NumberOfTime60-89DaysPastDueNotWorse 120269.0 0.187829 3.447901 0.0 0.000000 0.000000 0.000000 98.0
NumberOfTimes90DaysLate 120269.0 0.211925 3.465276 0.0 0.000000 0.000000 0.000000 98.0

It looks like the statistics before and after dropping the missing values are quite
similar, except for the variable DebtRatio, where we have substantially lower
means and standard deviation. Let’s also have a look at the distribution of the
variables for the rows that we have dropped
df.loc[df.isna().any(axis=1)].describe().T

count mean std min 25% 50% 75% max
SeriousDlqin2yrs 29731.0 0.056137 0.230189 0.0 0.000000 0.000000 0.000000 1.0
age 29731.0 56.362349 15.438786 21.0 46.000000 57.000000 67.000000 109.0
NumberOfDependents 25807.0 0.316310 0.809944 0.0 0.000000 0.000000 0.000000 9.0
MonthlyIncome 0.0 NaN NaN NaN NaN NaN NaN NaN
DebtRatio 29731.0 1673.396556 4248.372895 0.0 123.000000 1159.000000 2382.000000 329664.0
RevolvingUtilizationOfUnsecuredLines 29731.0 6.649421 217.814854 0.0 0.016027 0.081697 0.440549 22198.0
NumberOfOpenCreditLinesAndLoans 29731.0 7.216071 4.842720 0.0 4.000000 6.000000 10.000000 45.0
NumberRealEstateLoansOrLines 29731.0 0.871481 1.034291 0.0 0.000000 1.000000 1.000000 23.0
NumberOfTime30-59DaysPastDueNotWorse 29731.0 0.579866 6.255361 0.0 0.000000 0.000000 0.000000 98.0
NumberOfTime60-89DaysPastDueNotWorse 29731.0 0.452995 6.242076 0.0 0.000000 0.000000 0.000000 98.0
NumberOfTimes90DaysLate 29731.0 0.484612 6.250408 0.0 0.000000 0.000000 0.000000 98.0

Again, the mean of the dropped rows seems to be substantially higher for the
variable DebtRatio suggesting that the missing values are not missing entirely at
random. Note, however, that the standard deviation is lower meaning that the
dropped observations are more similar to each other in the DebtRatio dimension.
From our data dictionary, we know that the DebtRatio is defined as
data_dict.loc[data_dict['Variable Name'] ==

'DebtRatio'].style.hide()↪
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Table 6.6

Variable Name Description Type
DebtRatio Monthly debt payments, alimony,living costs divided by monthy gross income percentage

So, it seems that the DebtRatio is the ratio of the monthly debt payments to
the monthly gross income. We actually have MonthlyIncome in our dataset!
data_dict.loc[data_dict['Variable Name'] ==

'MonthlyIncome'].style.hide()↪

Table 6.7

Variable Name Description Type
MonthlyIncome Monthly income real

It does not say whether this is in gross or net terms though. Nevertheless, let’s
have a look at the relationship between the DebtRatio and the MonthlyIncome

ax = df.plot.scatter(x='MonthlyIncome', y='DebtRatio')
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel('MonthlyIncome')
ax.set_ylabel('DebtRatio')
ax.set_title('DebtRatio vs. MonthlyIncome')
plt.show()
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This looks rather odd. Note how there are a lot of monthly incomes that are
close to zero. Furthermore, there is a weird gap going through the scatter points.
We can look at the descriptive statistics of the rows with MonthlyIncome less
than 100
df.query('MonthlyIncome <= 100').describe().T

count mean std min 25% 50% 75% max
SeriousDlqin2yrs 2301.0 0.036506 0.187586 0.0 0.000000 0.000000 0.000000 1.0
age 2301.0 47.740113 16.199176 21.0 35.000000 46.000000 60.000000 103.0
NumberOfDependents 2301.0 0.778792 1.192441 0.0 0.000000 0.000000 2.000000 10.0
MonthlyIncome 2301.0 1.837027 11.408271 0.0 0.000000 0.000000 1.000000 100.0
DebtRatio 2301.0 1370.529300 2752.843610 0.0 79.000000 732.000000 1850.500000 61106.5
RevolvingUtilizationOfUnsecuredLines 2301.0 3.604101 125.553453 0.0 0.022243 0.113149 0.486629 5893.0
NumberOfOpenCreditLinesAndLoans 2301.0 7.171230 4.869628 0.0 4.000000 6.000000 10.000000 31.0
NumberRealEstateLoansOrLines 2301.0 0.742721 0.904984 0.0 0.000000 1.000000 1.000000 9.0
NumberOfTime30-59DaysPastDueNotWorse 2301.0 0.549326 6.132226 0.0 0.000000 0.000000 0.000000 98.0
NumberOfTime60-89DaysPastDueNotWorse 2301.0 0.428509 6.124274 0.0 0.000000 0.000000 0.000000 98.0
NumberOfTimes90DaysLate 2301.0 0.438505 6.128357 0.0 0.000000 0.000000 0.000000 98.0

These observations seem to have a higher debtRatio than the rest of the dataset
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but are less likely to default on their loans (the mean of SeriousDlqin2yrs is
equal to the fraction of defaulting loans). Given that they have no income (or
essentially no income), this seems rather odd and is likely due to an error during
data entry/collection. Since there are only a small number of observations with
MonthlyIncome less than 100, we can probably drop them. Let’s look at the
same figure for MonthlyIncome greater than 100
ax = df.query('MonthlyIncome >

100').plot.scatter(x='MonthlyIncome', y='DebtRatio')↪

ax.set_xscale('log')
ax.set_yscale('log')
ax.axvline(10**3, color='black', linestyle=':')
ax.axhline(10**(-3), color='black', linestyle=':')
ax.plot([10, 10**5], [10**(-1), 10**(-5)], color='black',

linestyle='--')↪

ax.set_xlabel('MonthlyIncome')
ax.set_ylabel('DebtRatio')
ax.set_title('DebtRatio vs. MonthlyIncome')
plt.show()

This looks better but note how the scatter points below the gap seem to line
up with the line 1

MonthlyIncome . Thus, there seems to be another potential data
entry/collection error since the debt in the raw data has likely been just set to
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1 for these observations. If this was a real dataset, we would need to investigate
this further and maybe talk to the people who have sent us the data. However,
given that this is just an example, we leave it as is.

Let’s also have a look at the distribution of DebtRatio variable
fig, ax = plt.subplots(1, 3, figsize=(15, 5))

df['DebtRatio'].plot.hist(bins=1000, ax=ax[0])
df.dropna()['DebtRatio'].plot.hist(bins=1000, ax=ax[1])
df.loc[df.isna().any(axis=1), 'DebtRatio'].plot.hist(bins=1000,

ax=ax[2])↪

ax[0].set_xscale('log')
ax[1].set_xscale('log')
ax[2].set_xscale('log')

ax[0].set_title('DebtRatio (Whole Dataset)')
ax[1].set_title('DebtRatio (Rows with Missing Values Dropped)')
ax[2].set_title('DebtRatio (Dropped Rows)')

fig.tight_layout()
plt.show()

Where we can again see the high DebtRatio values for the rows with missing
values. We can also have a look at the distribution of all the variables in the
dataset
fig, ax = plt.subplots(df.shape[1], 3, figsize=(10, 20))

for ii, col in enumerate(df.columns):

# Plot the distribution of the variable for the whole
dataset, the dataset with missing values dropped, and the
dropped rows

↪

↪

if col in ('SeriousDlqin2yrs', 'age',
'NumberOfTime30-59DaysPastDueNotWorse',
'NumberOfOpenCreditLinesAndLoans',
'NumberOfTimes90DaysLate',
'NumberRealEstateLoansOrLines',
'NumberOfTime60-89DaysPastDueNotWorse',
'NumberOfDependents'):

↪

↪

↪

↪

↪

↪
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# Use a bar plot for discrete variables
df[col].value_counts(normalize=True).sort_index().plot.b ⌋

ar(ax=ax[ii,0])↪

df.dropna()[col].value_counts(normalize=True).sort_index ⌋
().plot.bar(ax=ax[ii,1])↪

df.loc[df.isna().any(axis=1), col].value_counts(normaliz ⌋
e=True).sort_index().plot.bar(ax=ax[ii,2])↪

# Set the y-axis label
ax[ii,0].set_ylabel('Fraction')
ax[ii,1].set_ylabel('')
ax[ii,2].set_ylabel('')

else:

# Use a histogram for continuous variables
df[col].plot.hist(bins=1000, ax=ax[ii,0])
df.dropna()[col].plot.hist(bins=1000, ax=ax[ii,1])
df.loc[df.isna().any(axis=1), col].plot.hist(bins=1000,

ax=ax[ii,2])↪

# Set the x-axis to a logarithmic scale for the
continuous variables↪

ax[ii,0].set_xscale('log')
ax[ii,1].set_xscale('log')
ax[ii,2].set_xscale('log')

# Set the x-axis label
ax[ii,0].set_xlabel(col)
ax[ii,1].set_xlabel(col)
ax[ii,2].set_xlabel(col)

# Set the y-axis label
ax[ii,0].set_ylabel('Frequency')
ax[ii,1].set_ylabel('')
ax[ii,2].set_ylabel('')

ax[0,0].set_title('Whole Dataset')
ax[0,1].set_title('Rows with Missing Values Dropped')
ax[0,2].set_title('Dropped Rows')

fig.tight_layout()
plt.show()
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This shows another potential issue with our dataset. Checkout the variable
NumberOfTime30-59DaysPastDueNotWorse. It seems that there are a some ob-
servations with values greater than 90. This seems rather odd. Let’s have a
look at the data dictionary
data_dict.loc[data_dict['Variable

Name'].isin(['NumberOfTime30-59DaysPastDueNotWorse',
'NumberOfTime60-89DaysPastDueNotWorse',
'NumberOfTimes90DaysLate'])].style.hide()

↪

↪

↪

Table 6.9

Variable Name Description Type
NumberOfTime30-59DaysPastDueNotWorse Number of times borrower has been 30-59 days past due but no worse in the last 2 years. integer
NumberOfTimes90DaysLate Number of times borrower has been 90 days or more past due. integer
NumberOfTime60-89DaysPastDueNotWorse Number of times borrower has been 60-89 days past due but no worse in the last 2 years. integer

The data dictionary does not mention anything about values above 90. These
values may have a special meaning such as being a flag for missing values. Let’s
have a look at the distribution of the target variable for the rows with values
greater than 90
df.loc[df['NumberOfTime30-59DaysPastDueNotWorse'] > 90,

'SeriousDlqin2yrs'].value_counts()↪

SeriousDlqin2yrs
1 147
0 122
Name: count, dtype: int64

df.loc[df['NumberOfTime60-89DaysPastDueNotWorse'] > 90,
'SeriousDlqin2yrs'].value_counts()↪

SeriousDlqin2yrs
1 147
0 122
Name: count, dtype: int64

df.loc[df['NumberOfTimes90DaysLate'] > 90,
'SeriousDlqin2yrs'].value_counts()↪

SeriousDlqin2yrs
1 147
0 122
Name: count, dtype: int64
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df.loc[(df['NumberOfTimes90DaysLate'] > 90) &
(df['NumberOfTime60-89DaysPastDueNotWorse'] > 90) &
(df['NumberOfTime30-59DaysPastDueNotWorse'] > 90),
'SeriousDlqin2yrs'].value_counts()

↪

↪

↪

SeriousDlqin2yrs
1 147
0 122
Name: count, dtype: int64

There seems to be a very high number of defaults for these observations (more
than half), which makes sense given the meaning of these variables. Furthermore,
the observations with above 90 in one category have it above 90 in the other
categories as well. Thus, this might not be a data entry/collection error and
these are just borrowers who commonly fail to make loan payments.

Given that Alonso Robisco and Carbó Martínez (2022) seem to be dropping the
missing values, let’s do the same for our dataset
df = df.dropna()

and let’s also drop the rows with MonthlyIncome less than (or equal) 100
df = df.query('MonthlyIncome > 100')

to eliminate some of the potential data entry/collection errors.

Then double-check that we have no missing values left
df.isna().sum()

SeriousDlqin2yrs 0
age 0
NumberOfDependents 0
MonthlyIncome 0
DebtRatio 0
RevolvingUtilizationOfUnsecuredLines 0
NumberOfOpenCreditLinesAndLoans 0
NumberRealEstateLoansOrLines 0
NumberOfTime30-59DaysPastDueNotWorse 0
NumberOfTime60-89DaysPastDueNotWorse 0
NumberOfTimes90DaysLate 0
dtype: int64

or, alternatively,
df.info()

<class 'pandas.core.frame.DataFrame'>
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Index: 117968 entries, 0 to 149999
Data columns (total 11 columns):
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 SeriousDlqin2yrs 117968 non-null int64
1 age 117968 non-null int64
2 NumberOfDependents 117968 non-null float64
3 MonthlyIncome 117968 non-null float64
4 DebtRatio 117968 non-null float64
5 RevolvingUtilizationOfUnsecuredLines 117968 non-null float64
6 NumberOfOpenCreditLinesAndLoans 117968 non-null int64
7 NumberRealEstateLoansOrLines 117968 non-null int64
8 NumberOfTime30-59DaysPastDueNotWorse 117968 non-null int64
9 NumberOfTime60-89DaysPastDueNotWorse 117968 non-null int64
10 NumberOfTimes90DaysLate 117968 non-null int64

dtypes: float64(4), int64(7)
memory usage: 10.8 MB

All good! We should also check for duplicated rows with the duplicated()
method
df.loc[df.duplicated()]

SeriousDlqin2yrs age NumberOfDependents MonthlyIncome DebtRatio RevolvingUtilizationOfUnsecuredLines NumberOfOpenCreditLinesAndLoans NumberRealEstateLoansOrLines NumberOfTime30-59DaysPastDueNotWorse NumberOfTime60-89DaysPastDueNotWorse NumberOfTimes90DaysLate
7920 0 22 0.0 820.0 0.0 1.0 1 0 0 0 0
8840 0 23 0.0 820.0 0.0 1.0 1 0 0 0 0
15546 0 22 0.0 929.0 0.0 0.0 2 0 0 0 0
17265 0 22 0.0 820.0 0.0 1.0 1 0 0 0 0
21190 0 22 0.0 820.0 0.0 1.0 1 0 0 0 0
... ... ... ... ... ... ... ... ... ... ... ...
143750 0 23 0.0 820.0 0.0 1.0 1 0 0 0 0
144153 0 28 0.0 2200.0 0.0 1.0 0 0 0 0 0
144922 0 40 0.0 3500.0 0.0 0.0 1 0 0 0 0
148419 0 22 0.0 1500.0 0.0 0.0 2 0 0 0 0
149993 0 22 0.0 820.0 0.0 1.0 1 0 0 0 0

and look at the statistics of the duplicated rows
df.loc[df.duplicated()].describe().T

count mean std min 25% 50% 75% max
SeriousDlqin2yrs 72.0 0.013889 0.117851 0.0 0.0 0.0 0.0 1.000000
age 72.0 24.902778 8.868618 21.0 22.0 22.5 24.0 70.000000
NumberOfDependents 72.0 0.000000 0.000000 0.0 0.0 0.0 0.0 0.000000
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count mean std min 25% 50% 75% max
MonthlyIncome 72.0 1031.527778 542.007873 764.0 820.0 820.0 929.0 3500.000000
DebtRatio 72.0 0.017594 0.104816 0.0 0.0 0.0 0.0 0.633374
RevolvingUtilizationOfUnsecuredLines 72.0 0.500000 0.503509 0.0 0.0 0.5 1.0 1.000000
NumberOfOpenCreditLinesAndLoans 72.0 1.458333 0.749413 0.0 1.0 1.0 2.0 4.000000
NumberRealEstateLoansOrLines 72.0 0.000000 0.000000 0.0 0.0 0.0 0.0 0.000000
NumberOfTime30-59DaysPastDueNotWorse 72.0 0.000000 0.000000 0.0 0.0 0.0 0.0 0.000000
NumberOfTime60-89DaysPastDueNotWorse 72.0 0.000000 0.000000 0.0 0.0 0.0 0.0 0.000000
NumberOfTimes90DaysLate 72.0 0.013889 0.117851 0.0 0.0 0.0 0.0 1.000000

There are indeed 72 duplicated rows in the dataset. However, given the variables
in our dataset, which are mostly discrete, the fact that monthly income seems
to be generally rounded, it does not seem implausible that some rows might
appear multiple times in the dataset, simply because some observations have
the same values for all variables. Thus, we will keep the duplicated rows in the
dataset.

6.6 Data Exploration

Let’s start by looking at the distribution of the target variable SeriousDlqin2yrs
in our preprocessed dataset
df.value_counts("SeriousDlqin2yrs").plot.pie(autopct = "%.1f")
plt.ylabel('')
plt.show()
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We have already looked at some variables selectively. To do it more broadly,
we can look at the pair plot of the dataset. A pair plot shows the pairwise
relationships between the variables in our dataset. On the diagonal, we are
plotting the kernel density estimate
sns.pairplot(df.sample(1000), hue='SeriousDlqin2yrs')
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Note that we are plotting all variables in different colors based on whether our
target variable SeriousDlqin2yrs is 0 or 1. Furthermore, since it is computa-
tionally quite demanding to create this plot, we have sampled only 1000 rows
from the dataset. Since we have many variables, some of them with very skewed
distributions, and also several discrete variables, it might make sense to look
only at a subset
pp = sns.pairplot(df[['age', 'MonthlyIncome', 'DebtRatio',

'SeriousDlqin2yrs']], hue='SeriousDlqin2yrs')↪

# Fix the x-axis and y-axis scales
for ax in pp.axes.flat:

if ax.get_xlabel() == 'MonthlyIncome':
ax.set(xscale="log")
ax.set_xlim(10**1, 10**7)

if ax.get_ylabel() == 'MonthlyIncome':
ax.set(yscale="log")
ax.set_ylim(10**1, 10**7)
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if ax.get_xlabel() == 'DebtRatio':
ax.set(xscale="log")
ax.set_xlim(10**(-5), 10**3)

if ax.get_ylabel() == 'DebtRatio':
ax.set(yscale="log")
ax.set_ylim(10**(-5), 10**3)

We can continue with the analysis of our dataset by looking at the correlation
matrix of the variables in the dataset. We will calculate both the Pearson correla-
tion (linear relationship) and the Spearman correlation (monotonic relationship)
and create a heatmap of both correlation matrices
corr = df.corr() # Calculate the Pearson correlation (linear

relationship)↪

cmap = sns.diverging_palette(10, 255, as_cmap=True) # Create a
color map↪

mask = np.triu(np.ones_like(corr, dtype=bool)) # Create a mask to
only show the lower triangle of the matrix↪

sns.heatmap(corr, cmap=cmap, vmax=1, center=0, mask=mask) #
Create a heatmap of the correlation matrix (Note: vmax=1
makes sure that the color map goes up to 1 and center=0 are
used to center the color map at 0)

↪

↪

↪
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plt.show()

corr = df.corr('spearman') # Calculate the Spearman correlation
(monotonic relationship)↪

cmap = sns.diverging_palette(10, 255, as_cmap=True) # Create a
color map↪

mask = np.triu(np.ones_like(corr, dtype=bool)) # Create a mask to
only show the lower triangle of the matrix↪

sns.heatmap(corr, cmap=cmap, vmax=1, center=0, mask=mask) #
Create a heatmap of the correlation matrix (Note: vmax=1
makes sure that the color map goes up to 1 and center=0 are
used to center the color map at 0)

↪

↪

↪

plt.show()
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It seems that age is negatively correlated with default (SeriousDlqin2yrs)
which we can also see in the kernel density estimate of the age variable
sns.kdeplot(data=df, x='age', hue='SeriousDlqin2yrs', cut=0,

fill=True, common_norm=False)↪

plt.show()
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but then MonthlyIncome is also negatively correlated with default and with
age. Thus, likely the relationship between age and default is driven by
MonthlyIncome.

Furthermore, the variables NumberOfTime30-59DaysPastDueNotWorse,
NumberOfTime60-89DaysPastDueNotWorse, and NumberOfTimes90DaysLate
are highly correlated with each other and with the target variable
SeriousDlqin2yrs. This is not surprising given that these variables are
all related to the number of times a borrower has been past due on a loan
payment. RevolvingUtilizationOfUnsecuredLines is also highly correlated
with the target variable and with the number of times a borrower has been
past due on a loan payment. This is also not surprising given that the
RevolvingUtilizationOfUnsecuredLines is the ratio of the amount of money
owed to the amount of credit available.

6.7 Implementation of Loan Default Prediction
Models

We have explored our dataset and are now ready to implement machine learning
algorithms for loan default prediction. Let’s start by importing the required
libraries
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from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import confusion_matrix, accuracy_score,

roc_auc_score, recall_score, precision_score, roc_curve↪

from joblib import dump, load

6.7.1 Splitting the Data into Training and Test Sets
Before we can train a machine learning model, we need to split our dataset into
a training set and a test set.
X = df.drop('SeriousDlqin2yrs', axis=1) # All variables except

`SeriousDlqin2yrs`↪

y = df['SeriousDlqin2yrs'] # Only SeriousDlqin2yrs

We follow Alonso Robisco and Carbó Martínez (2022) and use 80% of the data
for training and 20% for testing. We will also set the stratify argument to
y to make sure that the distribution of the target variable is the same in the
training and test sets. Otherwise, we might randomly not have any defaulted
loans in the test set, which would make it impossible to correctly evaluate our
model.
X_train, X_test, y_train, y_test = train_test_split(X, y,

stratify=y, test_size = 0.2, random_state = 42)↪

6.7.2 Scaling Features
To improve the performance of our machine learning model, we should scale
the features. This is especially important for models that are sensitive to
the scale of the features. We will use the MinMaxScaler class from the
sklearn.preprocessing module to scale the features. The MinMaxScaler
class scales the features so that they have a minimum of 0 and a maximum of
1.
def scale_features(scaler, df, col_names, only_transform=False):

# Extract the features we want to scale
features = df[col_names]

# Fit the scaler to the features and transform them
if only_transform:
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features = scaler.transform(features.values)
else:

features = scaler.fit_transform(features.values)

# Replace the original features with the scaled features
df[col_names] = features

scaler = MinMaxScaler()
scale_features(scaler, X_train, X_train.columns)
scale_features(scaler, X_test, X_test.columns,

only_transform=True)↪

Note that we have very skewed distributions for some variables in our dataset.
This might make the MinMaxScaler less effective and there might be gains from
more carefully scaling different variables. However, for the sake of simplicity,
we will use the MinMaxScaler for all variables.

We have fully preprocessed and explored our dataset. The next step will be our
main task: the implementation of machine learning algorithms for loan default
prediction.

6.7.3 Evaluation Criertia
We will evaluate the performance of our machine-learning models using the
following metrics:

• Accuracy: The proportion of correctly classified instances
• Precision: The proportion of true positive predictions among all positive

predictions
• Recall: The proportion of true positive predictions among all actual pos-

itive instances
• ROC AUC: The area under the receiver operating characteristic curve

Furthermore, we will plot the ROC curve for each model to visualize the trade-off
between the true positive rate and the false positive rate. To make the evaluation
of our models more convenient, we will define a function that computes these
metrics and plots the ROC curve for a given model
def evaluate_model(clf, X_train, y_train, X_test, y_test,

label=''):↪

# Compute predictions and probabilities for tha training and
test set↪

y_pred_train = clf.predict(X_train)
y_proba_train = clf.predict_proba(X_train)
y_pred_test = clf.predict(X_test)
y_proba_test = clf.predict_proba(X_test)
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# Print accuracy measures
print(f"---------------------------------------------------- ⌋

----------")↪

print(f"Metrics: {label}")
print(f"---------------------------------------------------- ⌋

----------")↪

print(f"Accuracy (Train): {accuracy_score(y_train,
y_pred_train)}")↪

print(f"Precision (Train): {precision_score(y_train,
y_pred_train)}")↪

print(f"Recall (Train): {recall_score(y_train,
y_pred_train)}")↪

print(f"ROC AUC (Train): {roc_auc_score(y_train,
y_proba_train[:, 1])}")↪

print(f"---------------------------------------------------- ⌋
----------")↪

print(f"Accuracy (Test): {accuracy_score(y_test,
y_pred_test)}")↪

print(f"Precision (Test): {precision_score(y_test,
y_pred_test)}")↪

print(f"Recall (Test): {recall_score(y_test, y_pred_test)}")
print(f"ROC AUC (Test): {roc_auc_score(y_test,

y_proba_test[:, 1])}")↪

print(f"---------------------------------------------------- ⌋
----------")↪

# Compute the ROC curve
fpr_train, tpr_train, thresholds_train = roc_curve(y_train,
y_proba_train[:, 1])↪

fpr_test, tpr_test, thresholds_test = roc_curve(y_test,
y_proba_test[:, 1])↪

# Plot the ROC curve
plt.plot(fpr_train, tpr_train, label = "Train")
plt.plot(fpr_test, tpr_test, label = "Test")
plt.plot([0, 1], [0, 1], linestyle='--', color='grey')
plt.xlabel('False Positive Rate (FPR)')
plt.ylabel('True Positive Rate (TPR)')
plt.title(f'ROC Curve: {label}')
plt.legend()
plt.show()

While we compute all of these metrics, we will focus on the ROC AUC score as
our main evaluation metric.
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6.7.4 Logistic Regression

Let’s start with a simple logistic regression model. We will use the
LogisticRegression class from the sklearn.linear_model module to
train a logistic regression model. We will use the lbfgs solver and set
the max_iter parameter to 5000 to make sure that the optimization algo-
rithm converges. We will also set the penalty parameter to None to avoid
regularization.
clf_logistic = LogisticRegression(penalty = None, solver =

'lbfgs', max_iter = 5000).fit(X_train, y_train)↪

Let’s evaluate the performance of the logistic regression model
evaluate_model(clf_logistic, X_train, y_train, X_test, y_test,

label = 'Logistic Regression')↪

--------------------------------------------------------------
Metrics: Logistic Regression
--------------------------------------------------------------
Accuracy (Train): 0.9306588679085341
Precision (Train): 0.5787234042553191
Recall (Train): 0.041100030220610456
ROC AUC (Train): 0.6936171984517471
--------------------------------------------------------------
Accuracy (Test): 0.9302788844621513
Precision (Test): 0.5490196078431373
Recall (Test): 0.033836858006042296
ROC AUC (Test): 0.6926238627317243
--------------------------------------------------------------
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The model does not perform as well as what we have seen in previous lectures.
The ROC AUC score is only around 0.7. Note again that the accuracy score is
quite high but this is due to the imbalanced nature of the dataset.

6.7.5 Decision Tree
Let’s now train a decision tree classifier. We will use the DecisionTreeClassifier
class from the sklearn.tree module to train a decision tree classifier. We will
set the max_depth parameter to 7 as in Alonso Robisco and Carbó Martínez
(2022) to avoid overfitting.
clf_tree = DecisionTreeClassifier(max_depth=7).fit(X_train,

y_train)↪

Then, let’s evaluate the performance of the decision tree classifier
evaluate_model(clf_tree, X_train, y_train, X_test, y_test, label

= 'Decision Tree')↪

--------------------------------------------------------------
Metrics: Decision Tree
--------------------------------------------------------------
Accuracy (Train): 0.936348994426431
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Precision (Train): 0.6407185628742516
Recall (Train): 0.2101843457237836
ROC AUC (Train): 0.8265896261153018
--------------------------------------------------------------
Accuracy (Test): 0.9323556836483852
Precision (Test): 0.5529622980251346
Recall (Test): 0.18610271903323264
ROC AUC (Test): 0.8159823399376106
--------------------------------------------------------------

The decision tree classifier performs better than the logistic regression model
with a ROC AUC score of around 0.77. This is not surprising given that decision
trees are more flexible models that can capture non-linear relationships in the
data.

6.7.6 Random Forest
Let’s now train a random forest classifier. We will use the RandomForestClassifier
class from the sklearn.ensemble module to train a random forest classifier.
We will set the max_depth parameter to 20 and the n_estimators parameter
to 100 as in Alonso Robisco and Carbó Martínez (2022).
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clf_forest = RandomForestClassifier(max_depth=20, n_estimators =
100).fit(X_train, y_train)↪

Then, let’s evaluate the performance of the random forest classifier
evaluate_model(clf_forest, X_train, y_train, X_test, y_test,

label = 'Random Forest')↪

--------------------------------------------------------------
Metrics: Random Forest
--------------------------------------------------------------
Accuracy (Train): 0.976126899357874
Precision (Train): 1.0
Recall (Train): 0.6595648232094289
ROC AUC (Train): 0.9956114701590723
--------------------------------------------------------------
Accuracy (Test): 0.9321013817072137
Precision (Test): 0.5495327102803739
Recall (Test): 0.17764350453172206
ROC AUC (Test): 0.8400146575047622
--------------------------------------------------------------
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This is a good example of the dangers of not using a test set for the evaluation
of a model. The random forest classifier performs very well on the training set
with a ROC AUC score of close to 1.0. However, it performs much worse on the
test set with a ROC AUC score of around 0.83. Nevertheless, the random forest
classifier still outperforms the logistic regression and decision tree classifiers.

6.7.7 XGBoost

Let’s now train an XGBoost classifier. We will use the XGBClassifier class from
the xgboost module to train an XGBoost classifier. We will set the max_depth
parameter to 5 and the n_estimators parameter to 40 as in Alonso Robisco
and Carbó Martínez (2022).
clf_xgb = XGBClassifier(max_depth = 5, n_estimators = 40,

random_state = 0).fit(X_train, y_train)↪

Then, let’s evaluate the performance of the XGBoost classifier
evaluate_model(clf_xgb, X_train, y_train, X_test, y_test, label =

'XGBoost')↪

--------------------------------------------------------------
Metrics: XGBoost
--------------------------------------------------------------
Accuracy (Train): 0.9389238561468201
Precision (Train): 0.6947992700729927
Recall (Train): 0.23012994862496222
ROC AUC (Train): 0.8778826700467908
--------------------------------------------------------------
Accuracy (Test): 0.9330762058150377
Precision (Test): 0.5701107011070111
Recall (Test): 0.18670694864048337
ROC AUC (Test): 0.8514290998289821
--------------------------------------------------------------
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The XGBoost classifier performs quite well with an ROC AUC score of around
0.83. This is the best performance we have seen so far.

6.7.8 Neural Network
Finally, let’s train a neural network classifier. We will use the MLPClassifier
class from the sklearn.neural_network module to train a neural network clas-
sifier. We will set the activation parameter to relu, the solver parameter to
adam, and the hidden_layer_sizes parameter to (300,200,100) as in Alonso
Robisco and Carbó Martínez (2022). We will also set the random_state param-
eter to 42 to make the results reproducible.
#clf_nn = MLPClassifier(activation='relu', solver='adam',

hidden_layer_sizes=(300,200,100), random_state=42, max_iter =
300, verbose=True).fit(X_train, y_train)

↪

↪

#dump(clf_nn, 'clf_nn.joblib')

Since training the neural network classifier can take a long time, we have saved
the trained model to a file called clf_nn.joblib. We can load the model from
the file using the load function from the joblib module
clf_nn = load('clf_nn.joblib')
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Let’s check the loss curve of the neural network classifier
plt.plot(clf_nn.loss_curve_)
plt.title("Loss Curve", fontsize=14)
plt.xlabel('Iterations')
plt.ylabel('Cost')
plt.show()

Then, let’s evaluate the performance of the neural network classifier
evaluate_model(clf_nn, X_train, y_train, X_test, y_test, label =

'Neural Network')↪

--------------------------------------------------------------
Metrics: Neural Network
--------------------------------------------------------------
Accuracy (Train): 0.9465742683366182
Precision (Train): 0.8080531665363565
Recall (Train): 0.31233000906618313
ROC AUC (Train): 0.8682599095370773
--------------------------------------------------------------
Accuracy (Test): 0.9282020852759176
Precision (Test): 0.4694835680751174
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Recall (Test): 0.18126888217522658
ROC AUC (Test): 0.7983637135044449
--------------------------------------------------------------

6.8 Overview of the Results
Looking at all the models side by side, we can see that
results = pd.DataFrame({

'Model': ['Logistic Regression', 'Decision Tree', 'Random
Forest', 'XGBoost', 'Neural Network'],↪

'ROC AUC (Train)': [roc_auc_score(y_train,
clf_logistic.predict_proba(X_train)[:, 1]),↪

roc_auc_score(y_train,
clf_tree.predict_proba(X_train)[:, 1]),↪

roc_auc_score(y_train,
clf_forest.predict_proba(X_train)[:, 1]),↪

roc_auc_score(y_train,
clf_xgb.predict_proba(X_train)[:, 1]),↪

roc_auc_score(y_train,
clf_nn.predict_proba(X_train)[:, 1])],↪

'ROC AUC (Test)': [roc_auc_score(y_test,
clf_logistic.predict_proba(X_test)[:, 1]),↪
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roc_auc_score(y_test,
clf_tree.predict_proba(X_test)[:, 1]),↪

roc_auc_score(y_test,
clf_forest.predict_proba(X_test)[:, 1]),↪

roc_auc_score(y_test,
clf_xgb.predict_proba(X_test)[:, 1]),↪

roc_auc_score(y_test,
clf_nn.predict_proba(X_test)[:, 1])]↪

})
results

Model ROC AUC (Train) ROC AUC (Test)
0 Logistic Regression 0.693617 0.692624
1 Decision Tree 0.826590 0.815982
2 Random Forest 0.995611 0.840015
3 XGBoost 0.877883 0.851429
4 Neural Network 0.868260 0.798364

But can we do better? Alonso Robisco and Carbó Martínez (2022) have also
applied feature engineering to the dataset. Let’s see if we can improve the
performance of our models by adding some additional features.

6.9 Feature Engineering and Model Improve-
ment

We will add the square of each feature to the dataset to create additional features
as in Alonso Robisco and Carbó Martínez (2022). We will use the assign
method of the pandas DataFrame to add the squared features to the dataset
X2 = df.drop('SeriousDlqin2yrs', axis=1) # All variables except

`SeriousDlqin2yrs`↪

y2 = df['SeriousDlqin2yrs'] # Only SeriousDlqin2yrs
X2 = X2.assign(**X2.pow(2).add_suffix('_sq')) # Add the squared

features to the dataset↪

Then, we will split the dataset into a training set and a test set and scale the
features
X2_train, X2_test, y2_train, y2_test = train_test_split(X2, y2,

stratify=y2, test_size = 0.2, random_state = 42)↪

scaler = MinMaxScaler()
scale_features(scaler, X2_train, X2_train.columns)
scale_features(scaler, X2_test, X2_test.columns,

only_transform=True)↪
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Let’s train the models again with the new dataset and evaluate their perfor-
mance
clf_logistic2 = LogisticRegression(penalty = None, solver =

'lbfgs', max_iter = 5000).fit(X2_train, y2_train)↪

clf_tree2 = DecisionTreeClassifier(max_depth=7).fit(X2_train,
y2_train)↪

clf_forest2 = RandomForestClassifier(max_depth=20, n_estimators =
100).fit(X2_train, y2_train)↪

clf_xgb2 = XGBClassifier(max_depth = 5, n_estimators = 40,
random_state = 0).fit(X2_train, y2_train)↪

#clf_nn2 = MLPClassifier(activation='relu', solver='adam',
hidden_layer_sizes=(300,200,100), random_state=42, max_iter =
300, verbose=True).fit(X2_train, y2_train)

↪

↪

#dump(clf_nn2, 'clf_nn2.joblib')

The neural network classifier takes a long time to train, so we will load the
model from the file clf_nn2.joblib that we saved earlier
clf_nn2 = load('clf_nn2.joblib')

Furthermore, we will also add a LASSO penalty to the logistic regression model
to see if we can improve its performance
clf_logistic_lasso2 = LogisticRegression(penalty = 'l1', solver =

'liblinear').fit(X2_train, y2_train)↪

Let’s evaluate the performance of the models with the new features in the dataset
results2 = pd.DataFrame({

'Model': ['Logistic Regression', 'Decision Tree', 'Random
Forest', 'XGBoost', 'Neural Network', 'Logistic LASSO'],↪

'ROC AUC (Train)': [roc_auc_score(y2_train,
clf_logistic2.predict_proba(X2_train)[:, 1]),↪

roc_auc_score(y2_train,
clf_tree2.predict_proba(X2_train)[:, 1]),↪

roc_auc_score(y2_train,
clf_forest2.predict_proba(X2_train)[:, 1]),↪

roc_auc_score(y2_train,
clf_xgb2.predict_proba(X2_train)[:, 1]),↪

roc_auc_score(y2_train,
clf_nn2.predict_proba(X2_train)[:, 1]),↪

roc_auc_score(y2_train,
clf_logistic_lasso2.predict_proba(X2_train)[:, 1])↪

],
'ROC AUC (Test)': [roc_auc_score(y2_test,

clf_logistic2.predict_proba(X2_test)[:, 1]),↪
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roc_auc_score(y2_test,
clf_tree2.predict_proba(X2_test)[:, 1]),↪

roc_auc_score(y2_test,
clf_forest2.predict_proba(X2_test)[:, 1]),↪

roc_auc_score(y2_test,
clf_xgb2.predict_proba(X2_test)[:, 1]),↪

roc_auc_score(y2_test,
clf_nn2.predict_proba(X2_test)[:, 1]),↪

roc_auc_score(y2_test,
clf_logistic_lasso2.predict_proba(X2_test)[:, 1])↪

]
})
results2

Model ROC AUC (Train) ROC AUC (Test)
0 Logistic Regression 0.810256 0.813330
1 Decision Tree 0.826549 0.814273
2 Random Forest 0.994439 0.838450
3 XGBoost 0.877883 0.851429
4 Neural Network 0.871913 0.794420
5 Logistic LASSO 0.804410 0.810687

The models with the new features in the dataset perform better than the mod-
els without the new features. The random forest classifier and the XGBoost
classifier have the best performance with ROC AUC scores of around 0.84 and
0.85, respectively.

6.10 Feature Importance
We can also look at the feature importance of the random forest classifier and
the XGBoost classifier to see which features are most important for predicting
loan defaults. We will use the feature_importances_ attribute of the random
forest classifier and the XGBoost classifier to get the feature importances
feature_importances_forest = clf_forest2.feature_importances_
feature_importances_xgb = clf_xgb2.feature_importances_

Then, we will create a bar plot of the feature importances for the random forest
classifier and the XGBoost classifier
fig, ax = plt.subplots(1, 2, figsize=(15, 5))

df_feature_importance_forest = pd.DataFrame({'Feature':
X_train.columns, 'Importance':
clf_forest.feature_importances_})

↪

↪
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df_feature_importance_forest =
df_feature_importance_forest.sort_values('Importance',
ascending=False)

↪

↪

df_feature_importance_xgb = pd.DataFrame({'Feature':
X_train.columns, 'Importance': clf_xgb.feature_importances_})↪

df_feature_importance_xgb =
df_feature_importance_xgb.set_index('Feature')↪

df_feature_importance_xgb = df_feature_importance_xgb.loc[df_fea ⌋
ture_importance_forest['Feature'],
]

↪

↪

# Random Forest
ax[0].barh(df_feature_importance_forest['Feature'],

df_feature_importance_forest['Importance'])↪

ax[0].set_title('Random Forest')
ax[0].set_xlabel('Feature Importance')
ax[0].set_ylabel('Feature')

# XGBoost
ax[1].barh(df_feature_importance_forest['Feature'],

df_feature_importance_xgb['Importance'])↪

ax[1].set_title('XGBoost')
ax[1].set_xlabel('Feature Importance')
ax[1].set_ylabel('Feature')

fig.tight_layout()
plt.show()

6.11 Conclusions
We have successfully implemented machine learning algorithms for loan default
prediction. We have explored the dataset, preprocessed the data, trained sev-
eral machine learning models, and evaluated their performance. We have also
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applied feature engineering to the dataset and improved the performance of the
models. The random forest classifier and the XGBoost classifier have the best
performance with ROC AUC scores of around 0.84 and 0.85, respectively. We
have also looked at the feature importance of the random forest classifier and
the XGBoost classifier to see which features are most important for predicting
loan defaults.
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Chapter 7

House Price Prediction

The focus of the previous examples in this course was on classification problems.
However, regression problems are also quite common in practice and it will be
what we will try to explore in this application.

7.1 Problem Setup
The dataset that we will be using is the Kaggle dataset called “House Sales in
King County, USA”. As far as I know, this was not used in a Kaggle competition.
However, it is a quite popular dataset on Kaggle. The description reads:

This dataset contains house sale prices for King County, which in-
cludes Seattle. It includes homes sold between May 2014 and May
2015.

It’s a great dataset for evaluating simple regression models.

This means that the dataset is a snapshot of house prices in King County, USA,
between May 2014 and May 2015. The task, then, is quite straightforward:
given a set of features, we want to predict the price of a house.

7.2 Dataset
Unfortunately, the dataset does not have a detailed description of the variables.
However, in the comment section, some users found references with variable
descriptions. The variables in the dataset should be as follows:

Variable Description
id Unique ID for each home sold
date Date of the home sale
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Variable Description
price Price of each home sold
bedrooms Number of bedrooms
bathrooms Number of bathrooms, where .5 accounts for a room with

a toilet but no shower
sqft_living Square footage of the apartments’ interior living space
sqft_lot Square footage of the land space
floors Number of floors
waterfront A dummy variable for whether the apartment was

overlooking the waterfront or not
view An index from 0 to 4 of how good the view of the property

was
condition An index from 1 to 5 on the condition of the apartment
grade An index from 1 to 13, where 1-3 falls short of building

construction and design, 7 has an average level of
construction and design, and 11-13 have a high quality
level of construction and design.

sqft_above The square footage of the interior housing space that is
above ground level

sqft_basement The square footage of the interior housing space that is
below ground level

yr_built The year the house was initially built
yr_renovated The year of the house’s last renovation
zipcode What zipcode area the house is in
lat Lattitude
long Longitude
sqft_living15 The square footage of interior housing living space for the

nearest 15 neighbors
sqft_lot15 The square footage of the land lots of the nearest 15

neighbors

7.3 Putting the Problem into the Context of the
Course

The problem of predicting house prices is a regression problem which belongs
to the type of supervised learning problems. We will use the same tools that
we have used in the previous examples to solve this problem. The main difference
is that we will be using regression models instead of classification models.

7.4 Setting up the Environment
We will start by setting up the environment by importing the necessary libraries
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import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Let’s download the dataset automatically, unzip it, and place it in a folder called
data if you haven’t done so already
from io import BytesIO
from urllib.request import urlopen
from zipfile import ZipFile
import os.path

# Check if the file exists
if not os.path.isfile('data/kc_house_data.csv'):

print('Downloading dataset...')

# Define the dataset to be downloaded
zipurl = 'https://www.kaggle.com/api/v1/datasets/download/ha ⌋
rlfoxem/housesalesprediction'↪

# Download and unzip the dataset in the data folder
with urlopen(zipurl) as zipresp:

with ZipFile(BytesIO(zipresp.read())) as zfile:
zfile.extractall('data')

print('DONE!')

else:

print('Dataset already downloaded!')

Dataset already downloaded!

Then, we can load the data into a DataFrame using the read_csv function from
the pandas library
df = pd.read_csv('data/kc_house_data.csv')

Let’s also download some precomputed models that we will use later on
for file_name in ['reg_nn.joblib', 'reg_nn_cv.joblib',

'reg_xgb_cv.joblib', 'reg_rf_cv.joblib.zip']:↪

if not os.path.isfile(file_name):
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print(f'Downloading {file_name}...')

# Generate the download link
url = f'https://github.com/jmarbet/data-science-course/r ⌋

aw/main/notebooks/{file_name}'↪

if file_name.endswith('.zip'):

# Download and unzip the file
with urlopen(url) as zipresp:

with ZipFile(BytesIO(zipresp.read())) as zfile:
zfile.extractall('')

else:

# Download the file
with urlopen(url) as response, open(file_name, 'wb')

as out_file:↪

data = response.read()
out_file.write(data)

print('DONE!')

else:

print(f'{file_name} already downloaded!')

reg_nn.joblib already downloaded!
reg_nn_cv.joblib already downloaded!
reg_xgb_cv.joblib already downloaded!
reg_rf_cv.joblib.zip already downloaded!

7.5 Data Exploration
As with any new dataset, we first need to familiarize ourselves with the data.
We will start by looking at the first few rows of the dataset.
df.head(4).T # Transpose the dataframe for readability

0 1 2 3
id 7129300520 6414100192 5631500400 2487200875
date 20141013T000000 20141209T000000 20150225T000000 20141209T000000
price 221900.0 538000.0 180000.0 604000.0
bedrooms 3 3 2 4
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0 1 2 3
bathrooms 1.0 2.25 1.0 3.0
sqft_living 1180 2570 770 1960
sqft_lot 5650 7242 10000 5000
floors 1.0 2.0 1.0 1.0
waterfront 0 0 0 0
view 0 0 0 0
condition 3 3 3 5
grade 7 7 6 7
sqft_above 1180 2170 770 1050
sqft_basement 0 400 0 910
yr_built 1955 1951 1933 1965
yr_renovated 0 1991 0 0
zipcode 98178 98125 98028 98136
lat 47.5112 47.721 47.7379 47.5208
long -122.257 -122.319 -122.233 -122.393
sqft_living15 1340 1690 2720 1360
sqft_lot15 5650 7639 8062 5000

and for reference, we can also run df.info() again to see the data types of the
variables
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21613 entries, 0 to 21612
Data columns (total 21 columns):
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 id 21613 non-null int64
1 date 21613 non-null object
2 price 21613 non-null float64
3 bedrooms 21613 non-null int64
4 bathrooms 21613 non-null float64
5 sqft_living 21613 non-null int64
6 sqft_lot 21613 non-null int64
7 floors 21613 non-null float64
8 waterfront 21613 non-null int64
9 view 21613 non-null int64
10 condition 21613 non-null int64
11 grade 21613 non-null int64
12 sqft_above 21613 non-null int64
13 sqft_basement 21613 non-null int64
14 yr_built 21613 non-null int64
15 yr_renovated 21613 non-null int64
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16 zipcode 21613 non-null int64
17 lat 21613 non-null float64
18 long 21613 non-null float64
19 sqft_living15 21613 non-null int64
20 sqft_lot15 21613 non-null int64

dtypes: float64(5), int64(15), object(1)
memory usage: 3.5+ MB

What immediately stands out is that the date column does not seem to be a
proper datetime object. So, let’s fix that
df['date'] = pd.to_datetime(df['date'])

df.head().T

0 1 2 3 4
id 7129300520 6414100192 5631500400 2487200875 1954400510
date 2014-10-13 00:00:00 2014-12-09 00:00:00 2015-02-25 00:00:00 2014-12-09 00:00:00 2015-02-18 00:00:00
price 221900.0 538000.0 180000.0 604000.0 510000.0
bedrooms 3 3 2 4 3
bathrooms 1.0 2.25 1.0 3.0 2.0
sqft_living 1180 2570 770 1960 1680
sqft_lot 5650 7242 10000 5000 8080
floors 1.0 2.0 1.0 1.0 1.0
waterfront 0 0 0 0 0
view 0 0 0 0 0
condition 3 3 3 5 3
grade 7 7 6 7 8
sqft_above 1180 2170 770 1050 1680
sqft_basement 0 400 0 910 0
yr_built 1955 1951 1933 1965 1987
yr_renovated 0 1991 0 0 0
zipcode 98178 98125 98028 98136 98074
lat 47.5112 47.721 47.7379 47.5208 47.6168
long -122.257 -122.319 -122.233 -122.393 -122.045
sqft_living15 1340 1690 2720 1360 1800
sqft_lot15 5650 7639 8062 5000 7503

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21613 entries, 0 to 21612
Data columns (total 21 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
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0 id 21613 non-null int64
1 date 21613 non-null datetime64[ns]
2 price 21613 non-null float64
3 bedrooms 21613 non-null int64
4 bathrooms 21613 non-null float64
5 sqft_living 21613 non-null int64
6 sqft_lot 21613 non-null int64
7 floors 21613 non-null float64
8 waterfront 21613 non-null int64
9 view 21613 non-null int64
10 condition 21613 non-null int64
11 grade 21613 non-null int64
12 sqft_above 21613 non-null int64
13 sqft_basement 21613 non-null int64
14 yr_built 21613 non-null int64
15 yr_renovated 21613 non-null int64
16 zipcode 21613 non-null int64
17 lat 21613 non-null float64
18 long 21613 non-null float64
19 sqft_living15 21613 non-null int64
20 sqft_lot15 21613 non-null int64

dtypes: datetime64[ns](1), float64(5), int64(15)
memory usage: 3.5 MB

Much better! Note how the variable type changed for date. On the topic
of variable types, it seems surprising that bathrooms and floors are of type
float64. Let’s check if there is anything unusual about these variables
df['bathrooms'].value_counts()

bathrooms
2.50 5380
1.00 3852
1.75 3048
2.25 2047
2.00 1930
1.50 1446
2.75 1185
3.00 753
3.50 731
3.25 589
3.75 155
4.00 136
4.50 100
4.25 79
0.75 72
4.75 23
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5.00 21
5.25 13
0.00 10
5.50 10
1.25 9
6.00 6
0.50 4
5.75 4
6.75 2
8.00 2
6.25 2
6.50 2
7.50 1
7.75 1
Name: count, dtype: int64

df['floors'].value_counts()

floors
1.0 10680
2.0 8241
1.5 1910
3.0 613
2.5 161
3.5 8
Name: count, dtype: int64

It seems that the number of bathrooms and floors is not always an integer.
This is a bit surprising, but a possible interpretation is that in the case of
bathrooms, smaller bathrooms with e.g., only a toilet and a sink are counted
as 0.5 bathrooms, while a full bathroom would also need a shower or a bathtub.
The same logic could apply to floors, where a split-level house could have, e.g.,
1.5 floors. This is just a guess, but it seems plausible.

Note also that there do not seem to be any missing values, at least none were
encoded as such. Now, let’s look at the summary statistics of the dataset
df.describe().T

count mean min 25% 50% 75% max std
id 21613.0 4580301520.864988 1000102.0 2123049194.0 3904930410.0 7308900445.0 9900000190.0 2876565571.312049
date 21613 2014-10-29 04:38:01.959931648 2014-05-02 00:00:00 2014-07-22 00:00:00 2014-10-16 00:00:00 2015-02-17 00:00:00 2015-05-27 00:00:00 NaN
price 21613.0 540088.141767 75000.0 321950.0 450000.0 645000.0 7700000.0 367127.196483
bedrooms 21613.0 3.370842 0.0 3.0 3.0 4.0 33.0 0.930062
bathrooms 21613.0 2.114757 0.0 1.75 2.25 2.5 8.0 0.770163
sqft_living 21613.0 2079.899736 290.0 1427.0 1910.0 2550.0 13540.0 918.440897
sqft_lot 21613.0 15106.967566 520.0 5040.0 7618.0 10688.0 1651359.0 41420.511515
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count mean min 25% 50% 75% max std
floors 21613.0 1.494309 1.0 1.0 1.5 2.0 3.5 0.539989
waterfront 21613.0 0.007542 0.0 0.0 0.0 0.0 1.0 0.086517
view 21613.0 0.234303 0.0 0.0 0.0 0.0 4.0 0.766318
condition 21613.0 3.40943 1.0 3.0 3.0 4.0 5.0 0.650743
grade 21613.0 7.656873 1.0 7.0 7.0 8.0 13.0 1.175459
sqft_above 21613.0 1788.390691 290.0 1190.0 1560.0 2210.0 9410.0 828.090978
sqft_basement 21613.0 291.509045 0.0 0.0 0.0 560.0 4820.0 442.575043
yr_built 21613.0 1971.005136 1900.0 1951.0 1975.0 1997.0 2015.0 29.373411
yr_renovated 21613.0 84.402258 0.0 0.0 0.0 0.0 2015.0 401.67924
zipcode 21613.0 98077.939805 98001.0 98033.0 98065.0 98118.0 98199.0 53.505026
lat 21613.0 47.560053 47.1559 47.471 47.5718 47.678 47.7776 0.138564
long 21613.0 -122.213896 -122.519 -122.328 -122.23 -122.125 -121.315 0.140828
sqft_living15 21613.0 1986.552492 399.0 1490.0 1840.0 2360.0 6210.0 685.391304
sqft_lot15 21613.0 12768.455652 651.0 5100.0 7620.0 10083.0 871200.0 27304.179631

Let’s have a look at the pair plot of some of the quantitative variables
sns.pairplot(df[['price', 'bedrooms', 'bathrooms', 'sqft_living',

'sqft_lot']], diag_kind='kde')↪
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Unsurprisingly, there seems to be a positive correlation between the square
footage of the living area (or number of bedrooms, or number of bathrooms) and
the price of a house. However, there does not seem to be such a relationship
between the square footage of the lot and the price. This is more surprising
given that land prices can be very high in some areas. However, if these “houses”
include many apartments (that do not include the land they are built on), this
could explain the lack of a relationship. There also seems to be one house with
more than 30 bedrooms. This seems a bit unusual, so let’s have a closer look
df.query('bedrooms > 30').T

15870
id 2402100895
date 2014-06-25 00:00:00
price 640000.0
bedrooms 33
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15870
bathrooms 1.75
sqft_living 1620
sqft_lot 6000
floors 1.0
waterfront 0
view 0
condition 5
grade 7
sqft_above 1040
sqft_basement 580
yr_built 1947
yr_renovated 0
zipcode 98103
lat 47.6878
long -122.331
sqft_living15 1330
sqft_lot15 4700

What a bargain! A house with 33 bedrooms for only $640000! However, it just
has 1.75 bathrooms. It’s maybe not that good of a deal after all. Considering
that 1040 square feet corresponds to around 96 m^2. This seems like an error
in the data. We will remove this observation from the dataset
df = df.query('bedrooms < 30')

We could also look at the distribution of the number of bedrooms and floors
and how if affects prices
sns.boxplot(x=df['bedrooms'],y=df['price'])
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sns.boxplot(x=df['floors'],y=df['price'])
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There seems to be great variability in the prices for a given number of bedrooms
or floors.

Interestingly, we also have latitudinal and longitudinal information. We can use
this to plot the houses on a map. Let’s do that
import folium
from folium.plugins import HeatMap

# Initalize the map
m = folium.Map(location=[47.5112, -122.257])

# Create Layers and add them to the map
layer_heat_map = folium.FeatureGroup(name='Heat Map').add_to(m)
layer_most_expensive = folium.FeatureGroup(name='10 Most

Expensive Houses').add_to(m)↪

folium.LayerControl().add_to(m)

# Add a heatmap to a layer
data = df[['lat', 'long', 'price']].groupby(['lat','long']).mean ⌋

().reset_index().values.tolist() # Note for latitudes and
longitudes that show up multiple times, we take the mean()

↪

↪
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HeatMap(data, radius=8).add_to(layer_heat_map)

# Add the 10 most expensive houses to a layer
df_most_expensive_houses = df.sort_values(by=['price'],

ascending=False).head(10)↪

for indice, row in df_most_expensive_houses.iterrows():
folium.Marker(

location=[row["lat"], row["long"]],
popup=f"Price: {row['price']}",
icon=folium.map.Icon(color='red')

).add_to(layer_most_expensive)

m

<folium.folium.Map at 0x7fe6686ea910>

The 10 most expensive houses seem to be close to the waterfront and looking
at the actual data, we can see that about half of them are indeed overlooking
the waterfront
df_most_expensive_houses['waterfront']

7252 0
3914 1
9254 0
4411 0
1448 0
1315 1
1164 1
8092 1
2626 1
8638 0
Name: waterfront, dtype: int64

The heatmap also shows that the most expensive houses are located in the
north-western part of the county, in or near Seattle.

Finally, let’s look at the distribution of some of the discrete variables in the
dataset
fig, axes = plt.subplots(2, 2, figsize=(15, 10))
variables = ['waterfront', 'view', 'condition', 'grade']

for var, ax in zip(variables, axes.flatten()):
sns.countplot(x=var, data=df, ax=ax)

plt.tight_layout()
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fig, axes = plt.subplots(2, 1, figsize=(15, 10))
variables = ['yr_built', 'yr_renovated']

for var, ax in zip(variables, axes.flatten()):
sns.countplot(x=var, data=df, ax=ax)

for ax in axes.flatten():
if ax.get_xlabel() in ('yr_built', 'yr_renovated'):

ax.tick_params(axis='x', labelrotation=90)

plt.tight_layout()
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There seems to be some cyclicality in yr_built. We could probably infer hous-
ing booms and busts if we analyze it carefully. yr_renovated seems to have
a lot of zeros, which could mean that many houses have never been renovated.
Let’s check what’s going on here
df['yr_renovated'].value_counts()

yr_renovated
0 20698
2014 91
2013 37
2003 36
2005 35

...
1951 1
1959 1
1948 1
1954 1
1944 1
Name: count, Length: 70, dtype: int64

Indeed, almost all of the houses seem to have a zero. However, some houses
have values different from zero, so it might indeed be the case that houses with
a value of zero have never been renovated. We could also check if the year of
renovation is after the year the house was built
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df.query('yr_renovated != 0 and yr_renovated < yr_built')

id date price bedrooms bathrooms sqft_living sqft_lot floors waterfront view ... grade sqft_above sqft_basement yr_built yr_renovated zipcode lat long sqft_living15 sqft_lot15

With this command, we selected all observations where yr_renovated is dif-
ferent from zero and yr_renovated < yr_built. Since there were no rows
selected, there do not seem to be any errors in the dataset in this respect.

Another thing we can check is whether there are errors in the square footage
variables. For example, we could check if the sum of sqft_above and
sqft_basement is equal to sqft_living

df.query('sqft_above + sqft_basement != sqft_living')

id date price bedrooms bathrooms sqft_living sqft_lot floors waterfront view ... grade sqft_above sqft_basement yr_built yr_renovated zipcode lat long sqft_living15 sqft_lot15

This indeed seems to be correct for all observations.

We haven’t looked at the square footage of the 15 nearest neighbors yet. Let’s
check how it relates to price and the square footage of the house itself
sns.pairplot(df[['price', 'sqft_living', 'sqft_lot',

'sqft_living15', 'sqft_lot15']], diag_kind='kde')↪
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There seems to be a positive relationship between the square footage of the
living area of the house and the square footage of the living area of the 15
nearest neighbors. There also seems to be a positive relationship with price.
This likely just reflects the fact that neighborhoods tend to have houses of
similar sizes and prices.

Finally, let’s look at the distribution of the zip codes in the dataset
plt.figure(figsize=(15, 5))
sns.countplot(x='zipcode', data=df)
plt.xticks(rotation=90)
plt.show()



7.5. DATA EXPLORATION 187

This likely doesn’t tell us much, but it’s interesting to see that some zip codes are
much more common than others. Finally, we can again look at the correlation
between variables in our dataset
f, ax = plt.subplots(figsize=(16, 12))
corr = df.drop(['id', 'date'], axis=1).corr()
cmap = sns.diverging_palette(10, 255, as_cmap=True) # Create a

color map↪

mask = np.triu(np.ones_like(corr, dtype=bool)) # Create a mask to
only show the lower triangle of the matrix↪

sns.heatmap(corr, cmap=cmap, annot=True, vmax=1, center=0,
mask=mask) # Create a heatmap of the correlation matrix
(Note: vmax=1 makes sure that the color map goes up to 1 and
center=0 are used to center the color map at 0)

↪

↪

↪

plt.show()
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7.6 Implementation of House Price Prediction
Models

We have explored our dataset and are now ready to implement machine learning
algorithms for house price prediction. Let’s start by importing the required
libraries
from sklearn.preprocessing import MinMaxScaler, StandardScaler,

OneHotEncoder↪

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, Lasso, LassoCV
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
from sklearn.neural_network import MLPRegressor
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import mean_squared_error,

mean_absolute_error, r2_score↪

from joblib import dump, load
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7.6.1 Data Preprocessing
The dataset seems to be pretty clean already. Let’s check again the number of
missing values
df.isnull().sum()

id 0
date 0
price 0
bedrooms 0
bathrooms 0
sqft_living 0
sqft_lot 0
floors 0
waterfront 0
view 0
condition 0
grade 0
sqft_above 0
sqft_basement 0
yr_built 0
yr_renovated 0
zipcode 0
lat 0
long 0
sqft_living15 0
sqft_lot15 0
dtype: int64

df.info()

<class 'pandas.core.frame.DataFrame'>
Index: 21612 entries, 0 to 21612
Data columns (total 21 columns):
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 id 21612 non-null int64
1 date 21612 non-null datetime64[ns]
2 price 21612 non-null float64
3 bedrooms 21612 non-null int64
4 bathrooms 21612 non-null float64
5 sqft_living 21612 non-null int64
6 sqft_lot 21612 non-null int64
7 floors 21612 non-null float64
8 waterfront 21612 non-null int64
9 view 21612 non-null int64
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10 condition 21612 non-null int64
11 grade 21612 non-null int64
12 sqft_above 21612 non-null int64
13 sqft_basement 21612 non-null int64
14 yr_built 21612 non-null int64
15 yr_renovated 21612 non-null int64
16 zipcode 21612 non-null int64
17 lat 21612 non-null float64
18 long 21612 non-null float64
19 sqft_living15 21612 non-null int64
20 sqft_lot15 21612 non-null int64

dtypes: datetime64[ns](1), float64(5), int64(15)
memory usage: 3.6 MB

There don’t seem to be any missing values. However, we could still check for
duplicates
df.duplicated().sum()

0

There also don’t seem to be any duplicates.

There are some variables such as id, zipcode, lat and long which likely don’t
provide very useful information given the other variables in the dataset. We will
drop these variables
df = df.drop(['id', 'zipcode', 'lat', 'long'], axis=1)
df.head().T

0 1 2 3 4
date 2014-10-13 00:00:00 2014-12-09 00:00:00 2015-02-25 00:00:00 2014-12-09 00:00:00 2015-02-18 00:00:00
price 221900.0 538000.0 180000.0 604000.0 510000.0
bedrooms 3 3 2 4 3
bathrooms 1.0 2.25 1.0 3.0 2.0
sqft_living 1180 2570 770 1960 1680
sqft_lot 5650 7242 10000 5000 8080
floors 1.0 2.0 1.0 1.0 1.0
waterfront 0 0 0 0 0
view 0 0 0 0 0
condition 3 3 3 5 3
grade 7 7 6 7 8
sqft_above 1180 2170 770 1050 1680
sqft_basement 0 400 0 910 0
yr_built 1955 1951 1933 1965 1987
yr_renovated 0 1991 0 0 0
sqft_living15 1340 1690 2720 1360 1800
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0 1 2 3 4
sqft_lot15 5650 7639 8062 5000 7503

Binning & Encoding

Furthermore, we will need to convert the date variable into something that can
be used in a machine-learning model. We will extract the year and month from
the date and drop the original date variable
df['year_sale'] = pd.DatetimeIndex(df['date']).year
df['month_sale'] = pd.DatetimeIndex(df['date']).month

Furthermore, we can convert yr_built and yr_renovated into the age of the
house and the number of years since the last renovation
df['age'] = df['year_sale'] - df['yr_built']
df['years_since_renovation'] = df['year_sale'] -

np.maximum(df['yr_built'], df['yr_renovated'])↪

If the house has never been renovated, years_since_renovation will be equal
to the age of the house. We can drop the original yr_built, yr_renovated,
and date variables
df = df.drop(['yr_built', 'yr_renovated', 'date'], axis=1)

Let’s check the summary statistics of the dataset again
df.describe().T

count mean std min 25% 50% 75% max
price 21612.0 540083.518786 367135.061269 75000.0 321837.50 450000.00 645000.00 7700000.0
bedrooms 21612.0 3.369471 0.907982 0.0 3.00 3.00 4.00 11.0
bathrooms 21612.0 2.114774 0.770177 0.0 1.75 2.25 2.50 8.0
sqft_living 21612.0 2079.921016 918.456818 290.0 1426.50 1910.00 2550.00 13540.0
sqft_lot 21612.0 15107.388951 41421.423497 520.0 5040.00 7619.00 10688.25 1651359.0
floors 21612.0 1.494332 0.539991 1.0 1.00 1.50 2.00 3.5
waterfront 21612.0 0.007542 0.086519 0.0 0.00 0.00 0.00 1.0
view 21612.0 0.234314 0.766334 0.0 0.00 0.00 0.00 4.0
condition 21612.0 3.409356 0.650668 1.0 3.00 3.00 4.00 5.0
grade 21612.0 7.656904 1.175477 1.0 7.00 7.00 8.00 13.0
sqft_above 21612.0 1788.425319 828.094487 290.0 1190.00 1560.00 2210.00 9410.0
sqft_basement 21612.0 291.495697 442.580931 0.0 0.00 0.00 560.00 4820.0
sqft_living15 21612.0 1986.582871 685.392610 399.0 1490.00 1840.00 2360.00 6210.0
sqft_lot15 21612.0 12768.828984 27304.756179 651.0 5100.00 7620.00 10083.25 871200.0
year_sale 21612.0 2014.322969 0.467622 2014.0 2014.00 2014.00 2015.00 2015.0
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count mean std min 25% 50% 75% max
month_sale 21612.0 6.574449 3.115377 1.0 4.00 6.00 9.00 12.0
age 21612.0 43.316722 29.375731 -1.0 18.00 40.00 63.00 115.0
years_since_renovation 21612.0 40.935730 28.813764 -1.0 15.00 37.00 60.00 115.0

Finally, we need to take care of the categorical variables in the dataset. We will
use one-hot (aka ‘one-of-K’ or ‘dummy’) encoding for this purpose
# Define for which variables to do the one-hot encoding
categorical_variables = ['view', 'condition', 'grade']

# Initialize the encoder
encoder = OneHotEncoder(sparse_output=False)

# Apply the one-hot encoding to the desired columns
one_hot_encoded =

encoder.fit_transform(df[categorical_variables])↪

# Convert the results to a DataFrame
df_one_hot_encoded = pd.DataFrame(one_hot_encoded,

columns=encoder.get_feature_names_out(['view', 'condition',
'grade']), index=df.index)

↪

↪

# Concatenate the one-hot encoded columns with the original
DataFrame↪

df_encoded = pd.concat([df, df_one_hot_encoded], axis=1)

# Drop the old, unencoded columns from the old Dataframe
df_encoded = df_encoded.drop(categorical_variables, axis=1)

You can see that now we have many more dummy variables taking values zero
or one in our dataset
df_encoded.describe().T

count mean std min 25% 50% 75% max
price 21612.0 540083.518786 367135.061269 75000.0 321837.50 450000.00 645000.00 7700000.0
bedrooms 21612.0 3.369471 0.907982 0.0 3.00 3.00 4.00 11.0
bathrooms 21612.0 2.114774 0.770177 0.0 1.75 2.25 2.50 8.0
sqft_living 21612.0 2079.921016 918.456818 290.0 1426.50 1910.00 2550.00 13540.0
sqft_lot 21612.0 15107.388951 41421.423497 520.0 5040.00 7619.00 10688.25 1651359.0
floors 21612.0 1.494332 0.539991 1.0 1.00 1.50 2.00 3.5
waterfront 21612.0 0.007542 0.086519 0.0 0.00 0.00 0.00 1.0
sqft_above 21612.0 1788.425319 828.094487 290.0 1190.00 1560.00 2210.00 9410.0
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count mean std min 25% 50% 75% max
sqft_basement 21612.0 291.495697 442.580931 0.0 0.00 0.00 560.00 4820.0
sqft_living15 21612.0 1986.582871 685.392610 399.0 1490.00 1840.00 2360.00 6210.0
sqft_lot15 21612.0 12768.828984 27304.756179 651.0 5100.00 7620.00 10083.25 871200.0
year_sale 21612.0 2014.322969 0.467622 2014.0 2014.00 2014.00 2015.00 2015.0
month_sale 21612.0 6.574449 3.115377 1.0 4.00 6.00 9.00 12.0
age 21612.0 43.316722 29.375731 -1.0 18.00 40.00 63.00 115.0
years_since_renovation 21612.0 40.935730 28.813764 -1.0 15.00 37.00 60.00 115.0
view_0 21612.0 0.901721 0.297698 0.0 1.00 1.00 1.00 1.0
view_1 21612.0 0.015362 0.122990 0.0 0.00 0.00 0.00 1.0
view_2 21612.0 0.044559 0.206337 0.0 0.00 0.00 0.00 1.0
view_3 21612.0 0.023598 0.151797 0.0 0.00 0.00 0.00 1.0
view_4 21612.0 0.014760 0.120595 0.0 0.00 0.00 0.00 1.0
condition_1 21612.0 0.001388 0.037232 0.0 0.00 0.00 0.00 1.0
condition_2 21612.0 0.007959 0.088857 0.0 0.00 0.00 0.00 1.0
condition_3 21612.0 0.649223 0.477224 0.0 0.00 1.00 1.00 1.0
condition_4 21612.0 0.262771 0.440149 0.0 0.00 0.00 1.00 1.0
condition_5 21612.0 0.078660 0.269214 0.0 0.00 0.00 0.00 1.0
grade_1 21612.0 0.000046 0.006802 0.0 0.00 0.00 0.00 1.0
grade_3 21612.0 0.000139 0.011781 0.0 0.00 0.00 0.00 1.0
grade_4 21612.0 0.001342 0.036607 0.0 0.00 0.00 0.00 1.0
grade_5 21612.0 0.011197 0.105226 0.0 0.00 0.00 0.00 1.0
grade_6 21612.0 0.094299 0.292252 0.0 0.00 0.00 0.00 1.0
grade_7 21612.0 0.415510 0.492821 0.0 0.00 0.00 1.00 1.0
grade_8 21612.0 0.280770 0.449386 0.0 0.00 0.00 1.00 1.0
grade_9 21612.0 0.120998 0.326132 0.0 0.00 0.00 0.00 1.0
grade_10 21612.0 0.052471 0.222980 0.0 0.00 0.00 0.00 1.0
grade_11 21612.0 0.018462 0.134618 0.0 0.00 0.00 0.00 1.0
grade_12 21612.0 0.004164 0.064399 0.0 0.00 0.00 0.00 1.0
grade_13 21612.0 0.000602 0.024519 0.0 0.00 0.00 0.00 1.0

Given that these categorical variables are ordinal, this might have not been
strictly necessary. However, is required if you have data that is not ordinal.

Splitting the Data into Training and Test Sets

Before we can train a machine learning model, we need to split our dataset into
a training set and a test set.
X = df_encoded.drop('price', axis=1) # All variables except

`SeriousDlqin2yrs`↪

y = df_encoded[['price']] # Only SeriousDlqin2yrs

We will use 80% of the data for training and 20% for testing. Note that since
our target variable is continuous, we don’t need to stratify the split
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X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size = 0.2, random_state = 42)↪

Scaling Features

To improve the performance of our machine learning model, we should scale
the features. We will use the StandardScaler and MinMaxScalerclass from the
sklearn.preprocessing module to scale the features. The StandardScaler
scales each feature to have a mean of 0 and a standard deviation of 1. The
MinMaxScaler scales each feature to a given range, usually 0 to 1.
def scale_features(scaler, df, col_names, only_transform=False):

# Extract the features we want to scale
features = df[col_names]

# Fit the scaler to the features and transform them
if only_transform:

features = scaler.transform(features.values)
else:

features = scaler.fit_transform(features.values)

# Replace the original features with the scaled features
df[col_names] = features

# Define which features to scale with the StandardScaler and
MinMaxScaler↪

for_standard_scaler = [
'bedrooms',
'bathrooms',
'sqft_living',
'sqft_lot',
'floors',
'sqft_above',
'sqft_basement',
'sqft_living15',
'sqft_lot15',
'age',
'years_since_renovation'

]

for_min_max_scaler = [
'year_sale',
'month_sale'
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]

# Apply the standard scaler (Note: we use the same mean and std
for scaling the test set)↪

standard_scaler = StandardScaler()
scale_features(standard_scaler, X_train, for_standard_scaler)
scale_features(standard_scaler, X_test, for_standard_scaler,

only_transform=True)↪

# Apply the minmax scaler (Note: we use the same min and max for
scaling the test set)↪

minmax_scaler = MinMaxScaler()
scale_features(minmax_scaler, X_train, for_min_max_scaler)
scale_features(minmax_scaler, X_test, for_min_max_scaler,

only_transform=True)↪

# Apply standard scaler to the target variable
target_scaler = StandardScaler()
y_train = pd.DataFrame(target_scaler.fit_transform(y_train),

columns=['price'])↪

y_test = pd.DataFrame(target_scaler.transform(y_test),
columns=['price'])↪

7.6.2 Evaluation Criertia
We will evaluate our models based on the following criteria

• Root Mean Squared Error (MSE): Square root of the mean of the
squared differences between the predicted and the actual values

• Mean Absolute Error (MAE): Mean of the absolute differences be-
tween the predicted and the actual values

• R-squared (R2): Proportion of the variance in the dependent variable
that is predictable from the independent variables

We define a function that a function that will calculate these metrics for us
def evaluate_model(model, X_train, y_train, X_test, y_test,

label='', print_results=True):↪

# Predict the target variable
y_pred_train = model.predict(X_train)
y_pred_test = model.predict(X_test)

# Transform the target variable back to the original scale
# (This makes it easier to interpret the RMSE and MAE)
y_train_inv = target_scaler.inverse_transform(y_train)
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y_test_inv = target_scaler.inverse_transform(y_test)
y_pred_train_inv =
target_scaler.inverse_transform(y_pred_train.reshape(-1, 1))↪

y_pred_test_inv =
target_scaler.inverse_transform(y_pred_test.reshape(-1, 1))↪

# Calculate the evaluation metrics
rmse_train = mean_squared_error(y_train_inv,
y_pred_train_inv, squared=False)↪

rmse_test = mean_squared_error(y_test_inv, y_pred_test_inv,
squared=False)↪

mae_train = mean_absolute_error(y_train_inv,
y_pred_train_inv)↪

mae_test = mean_absolute_error(y_test_inv, y_pred_test_inv)
r2_train = r2_score(y_train_inv, y_pred_train_inv)
r2_test = r2_score(y_test_inv, y_pred_test_inv)

# Print the evaluation metrics
if print_results:

print(f"------------------------------------------------ ⌋
--------------")↪

print(f"Metrics: {label}")
print(f"------------------------------------------------ ⌋

--------------")↪

print(f"RMSE (Train): {rmse_train}")
print(f"MAE (Train): {mae_train}")
print(f"R2 (Train): {r2_train}")
print(f"------------------------------------------------ ⌋

--------------")↪

print(f"RMSE (Test): {rmse_test}")
print(f"MAE (Test): {mae_test}")
print(f"R2 (Test): {r2_test}")
print(f"------------------------------------------------ ⌋

--------------")↪

return rmse_train, rmse_test, mae_train, mae_test, r2_train,
r2_test↪

7.6.3 Linear Regression
We will start by training a simple linear regression model using only a few basic
features
basic_features = ['bedrooms', 'bathrooms', 'sqft_living']
reg_lin_basic = LinearRegression().fit(X_train[basic_features],

y_train)↪
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We can evaluate the model using the function we defined earlier
evaluate_model(reg_lin_basic, X_train[basic_features], y_train,

X_test[basic_features], y_test, label = 'Linear Regression
(Basic Features)');

↪

↪

--------------------------------------------------------------
Metrics: Linear Regression (Basic Features)
--------------------------------------------------------------
RMSE (Train): 253683.12629128053
MAE (Train): 168994.9071419931
R2 (Train): 0.5085183567620137
--------------------------------------------------------------
RMSE (Test): 271925.6970016718
MAE (Test): 174452.3090166579
R2 (Test): 0.5073277848405491
--------------------------------------------------------------

We are not doing that badly with a RMSE of around $250000 if we take into
account the minimum and maximum prices in the dataset
print(f'Min Price: {df["price"].min()}, Max Price:

{df["price"].max()}')↪

Min Price: 75000.0, Max Price: 7700000.0

and the distribution of prices
ax = df['price'].plot.hist(bins=100)
ax.ticklabel_format(useOffset=False,style='plain')
ax.tick_params(axis='x', labelrotation=45)
ax.set_xlim(0,3000000)
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Let’s now try a linear regression but with all the features
reg_lin = LinearRegression().fit(X_train, y_train)

We can evaluate the model using the function we defined earlier
evaluate_model(reg_lin, X_train, y_train, X_test, y_test, label =

'Linear Regression (All Features)');↪

--------------------------------------------------------------
Metrics: Linear Regression (All Features)
--------------------------------------------------------------
RMSE (Train): 203680.13271422562
MAE (Train): 133387.29115116654
R2 (Train): 0.6831735158523966
--------------------------------------------------------------
RMSE (Test): 215930.28643225055
MAE (Test): 137547.23127374452
R2 (Test): 0.6893404625153258
--------------------------------------------------------------

The performance of the model has improved. Since we have a large sample size
but relatively few regressors it is unlikely to overfit. Note, however, that if we
add more regressors, e.g., squared and cubed features, etc. we might run into
trouble at a certain point. That’s why it’s important to use the train-test split
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to check that our model generalizes.

7.6.4 LASSO Regression
One way to deal with overfitting in a linear regression is to use LASSO regres-
sion. LASSO regression is a type of linear regression that uses a penalty (or
regularization) term to shrink the coefficients of the regressors towards zero.
Essentially, LASSO selects a subset of features, which can help to prevent over-
fitting. We will use the Lasso class from the sklearn.linear_model module
to train a LASSO regression model
reg_lasso = Lasso(alpha=0.1).fit(X_train, y_train)

We can evaluate the model using the function we defined earlier
evaluate_model(reg_lasso, X_train, y_train, X_test, y_test, label

= 'LASSO Regression');↪

--------------------------------------------------------------
Metrics: LASSO Regression
--------------------------------------------------------------
RMSE (Train): 254661.31873140397
MAE (Train): 163764.59579244166
R2 (Train): 0.5047207803287292
--------------------------------------------------------------
RMSE (Test): 273446.0239203981
MAE (Test): 168730.33198849438
R2 (Test): 0.5018033587261654
--------------------------------------------------------------

This model is doing a bit worse than a standard linear regression. However,
we just chose the value of the penalty term 𝛼 arbitrarily. We can use cross-
validation to find the best value of 𝛼
reg_lasso_cv = LassoCV(cv=5, random_state=42).fit(X_train,

y_train.values.ravel())↪

This command repeatedly runs 5-fold cross-validation for a LASSO regression
using different values of 𝛼. The 𝛼 that minimizes the mean squared error is
then stored in the alpha_ attribute of the model
reg_lasso_cv.alpha_

0.0007018253833076978

This 𝛼 is much smaller than our initial value. Let’s see how well it does in terms
of the RMSE
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evaluate_model(reg_lasso_cv, X_train, y_train, X_test, y_test,
label = 'LASSO Regression (CV)');↪

--------------------------------------------------------------
Metrics: LASSO Regression (CV)
--------------------------------------------------------------
RMSE (Train): 204360.76389300276
MAE (Train): 134141.73731503487
R2 (Train): 0.6810525207180653
--------------------------------------------------------------
RMSE (Test): 217146.28161042708
MAE (Test): 138085.31092628682
R2 (Test): 0.6858316989155063
--------------------------------------------------------------

It’s always a good idea to use cross-validation to find the best hyperparameters
for your model. For more complicated models with several hyperparameter
choices, one can use GridSearchCV or RandomizedSearchCV from sklearn to
find the hyperparameters.

We can check which coefficients the LASSO regression has shrunk to zero be-
cause of the regularization term
X_train.columns[np.abs(reg_lasso_cv.coef_) < 1e-12]

Index(['sqft_above', 'view_1', 'view_3', 'condition_1', 'condition_3',
'grade_1', 'grade_3'],
dtype='object')

Compare this to the linear regression where none of the coefficients were zero
X_train.columns[(np.abs(reg_lin.coef_) < 1e-12).reshape(-1)]

Index([], dtype='object')

7.6.5 Decision Tree
We will now train a decision tree regressor on the data
reg_tree = DecisionTreeRegressor(random_state=42).fit(X_train,

y_train)↪

We can evaluate the model using the function we defined earlier
evaluate_model(reg_tree, X_train, y_train, X_test, y_test, label

= 'Decision Tree');↪

--------------------------------------------------------------
Metrics: Decision Tree
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--------------------------------------------------------------
RMSE (Train): 0.0
MAE (Train): 0.0
R2 (Train): 1.0
--------------------------------------------------------------
RMSE (Test): 276927.1448808092
MAE (Test): 163650.69442516772
R2 (Test): 0.48903797314415076
--------------------------------------------------------------

The decision tree perfectly fits the training data but does not generalize well
to the test data. Why did this happen? We did not change any of the default
hyperparameters of the decision tree which resulted in the decision tree overfit-
ting, i.e., it learned the noise in the training data. We can try to reduce the
depth of the tree to prevent overfitting
reg_tree = DecisionTreeRegressor(max_depth=10,

random_state=42).fit(X_train, y_train)↪

evaluate_model(reg_tree, X_train, y_train, X_test, y_test, label
= 'Decision Tree');↪

--------------------------------------------------------------
Metrics: Decision Tree
--------------------------------------------------------------
RMSE (Train): 151229.68262754745
MAE (Train): 104245.46532488744
R2 (Train): 0.8253380836313531
--------------------------------------------------------------
RMSE (Test): 242624.93510350658
MAE (Test): 139455.8139319333
R2 (Test): 0.6077811751936795
--------------------------------------------------------------

This seems to have improved the performance of the model. However, we need a
more rigorous way to find the best hyperparameters. One such way is to use grid
search, which tries many different hyperparameter values. We, then, combine
this with cross-validation to find the best hyperparameters for the decision tree.
GridSearchCV from the sklearn package does exactly that
param_grid = {

'max_depth': [5, 10, 15, 20],
'min_samples_split': [2, 5, 10, 15],
'min_samples_leaf': [1, 2, 5, 10]

}

reg_tree_cv =
GridSearchCV(DecisionTreeRegressor(random_state=42),
param_grid, cv=5).fit(X_train, y_train)

↪

↪
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Note that param_grid is a dictionary where the keys are the hyperparameters
of the decision tree and the values are lists of the values we want to try. The
best hyperparameters are stored in the best_params_ attribute of the model
reg_tree_cv.best_params_

{'max_depth': 10, 'min_samples_leaf': 5, 'min_samples_split': 15}

We can then evaluate the model using the best hyperparameters
evaluate_model(reg_tree_cv, X_train, y_train, X_test, y_test,

label = 'Decision Tree (CV)');↪

--------------------------------------------------------------
Metrics: Decision Tree (CV)
--------------------------------------------------------------
RMSE (Train): 165756.35013566245
MAE (Train): 111454.50933401058
R2 (Train): 0.7901714932986897
--------------------------------------------------------------
RMSE (Test): 233527.64612876996
MAE (Test): 137387.4802938534
R2 (Test): 0.6366424628160059
--------------------------------------------------------------

Note that using reg_tree_cv as the model to be evaluated uses automatically
the best estimator. Alternatively, we could also use best_estimator_ attribute
in evaluate_model

reg_tree_cv.best_estimator_

DecisionTreeRegressor(max_depth=10, min_samples_leaf=5, min_samples_split=15,
random_state=42)

7.6.6 Random Forest
We will now train a random forest regressor on the data
reg_rf = RandomForestRegressor(random_state=42).fit(X_train,

y_train)↪

We can evaluate the model using the function we defined earlier
evaluate_model(reg_rf, X_train, y_train, X_test, y_test, label =

'Random Forest');↪

--------------------------------------------------------------
Metrics: Random Forest
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--------------------------------------------------------------
RMSE (Train): 66638.2969151954
MAE (Train): 42418.54030134768
R2 (Train): 0.9660865542789411
--------------------------------------------------------------
RMSE (Test): 207350.8910584885
MAE (Test): 120473.06515845477
R2 (Test): 0.713536442057418
--------------------------------------------------------------

Let’s use grid search with cross-validation to find the best hyperparameters for
the random forest
param_grid = {

'max_depth': [5, 10, 15, 20],
'n_estimators': [50, 100, 150, 200, 300],

}

#reg_rf_cv = GridSearchCV(RandomForestRegressor(random_state=42),
param_grid, cv=5).fit(X_train, y_train)↪

#dump(reg_rf_cv, 'reg_rf_cv.joblib')

reg_rf_cv = load('reg_rf_cv.joblib')

We are trying 20 different hyperparameter combinations and for each param-
eter combination we will have to estimate the model 5 times (5-fold cross-
validation). This might take a while. The best hyperparameters are stored
in the best_params_ attribute of the model
reg_rf_cv.best_params_

{'max_depth': 20, 'n_estimators': 300}

We can then evaluate the model using the best hyperparameters
evaluate_model(reg_rf_cv, X_train, y_train, X_test, y_test, label

= 'Random Forest (CV)');↪

--------------------------------------------------------------
Metrics: Random Forest (CV)
--------------------------------------------------------------
RMSE (Train): 72654.48965997726
MAE (Train): 49716.92916875867
R2 (Train): 0.959686634834322
--------------------------------------------------------------
RMSE (Test): 206073.35722748775
MAE (Test): 120254.77646893183
R2 (Test): 0.7170554960056299
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--------------------------------------------------------------

The tuned random forest model performs a bit better than the one with the
default values. However, the improvement is not that big. This is likely because
the default values of the random forest are already quite good. We could try to
test more hyperparameters in the grid search. Note that we chose the highest
value for both parameters. Thus, we could try even higher values. However,
this would increase the computational time.

7.6.7 XGBoost
We will now train an XGBoost regressor on the data
reg_xgb = XGBRegressor(random_state=42).fit(X_train, y_train)

We can evaluate the model using the function we defined earlier
evaluate_model(reg_xgb, X_train, y_train, X_test, y_test, label =

'XGBoost');↪

--------------------------------------------------------------
Metrics: XGBoost
--------------------------------------------------------------
RMSE (Train): 101571.54001161143
MAE (Train): 76626.15270638122
R2 (Train): 0.9212105237017153
--------------------------------------------------------------
RMSE (Test): 204360.86407090884
MAE (Test): 120757.43200613001
R2 (Test): 0.7217385587721041
--------------------------------------------------------------

Let’s use grid search with cross-validation to find the best hyperparameters for
the XGBoost
param_grid = {

'max_depth': [5, 10, 15, 20],
'n_estimators': [50, 100, 150, 200, 300],

}

#reg_xgb_cv = GridSearchCV(XGBRegressor(random_state=42),
param_grid, cv=5).fit(X_train, y_train)↪

#dump(reg_xgb_cv, 'reg_xgb_cv.joblib')

reg_xgb_cv = load('reg_xgb_cv.joblib')

The best hyperparameters are stored in the best_params_ attribute of the
model
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reg_xgb_cv.best_params_

{'max_depth': 5, 'n_estimators': 50}

We can then evaluate the model using the best hyperparameters
evaluate_model(reg_xgb_cv, X_train, y_train, X_test, y_test,

label = 'XGBoost (CV)');↪

--------------------------------------------------------------
Metrics: XGBoost (CV)
--------------------------------------------------------------
RMSE (Train): 134323.31888964228
MAE (Train): 99419.23493894239
R2 (Train): 0.862207059779255
--------------------------------------------------------------
RMSE (Test): 201839.3762899356
MAE (Test): 123656.21579704488
R2 (Test): 0.7285628038252234
--------------------------------------------------------------

Again, the tuned XGBoost model performs a bit better than the one with the
default values. However, the improvement is not that big.

7.6.8 Neural Network
Finally, let’s try to train a neural network on the data
#reg_nn = MLPRegressor(random_state=42,

verbose=True).fit(X_train, y_train)↪

#dump(reg_nn, 'reg_nn.joblib')

reg_nn = load('reg_nn.joblib')

We can evaluate the model using the function we defined earlier
evaluate_model(reg_nn, X_train, y_train, X_test, y_test, label =

'Neural Network');↪

--------------------------------------------------------------
Metrics: Neural Network
--------------------------------------------------------------
RMSE (Train): 142063.16391660276
MAE (Train): 101370.39765456515
R2 (Train): 0.8458700261274621
--------------------------------------------------------------
RMSE (Test): 201217.79803902542
MAE (Test): 125534.39997216879
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R2 (Test): 0.7302320486389542
--------------------------------------------------------------

We can try to improve the performance of the neural network by tuning the
hyperparameters. We will use grid search with cross-validation to find the best
hyperparameters for the neural network
param_grid = {

'hidden_layer_sizes': [(100,), (100, 100), (200,), (200,
100)],↪

'alpha': [0.0001, 0.001, 0.01, 0.1],
}

#reg_nn_cv = GridSearchCV(MLPRegressor(random_state=42,
verbose=True), param_grid, cv=5).fit(X_train, y_train)↪

#dump(reg_nn_cv, 'reg_nn_cv.joblib')

reg_nn_cv = load('reg_nn_cv.joblib')

The best hyperparameters are stored in the best_params_ attribute of the
model
reg_nn_cv.best_params_

{'alpha': 0.1, 'hidden_layer_sizes': (100,)}

We can then evaluate the model using the best hyperparameters
evaluate_model(reg_nn_cv, X_train, y_train, X_test, y_test, label

= 'Neural Network');↪

--------------------------------------------------------------
Metrics: Neural Network
--------------------------------------------------------------
RMSE (Train): 155891.59268622578
MAE (Train): 108538.19421278372
R2 (Train): 0.814403608721182
--------------------------------------------------------------
RMSE (Test): 192879.83144507415
MAE (Test): 122558.79964553488
R2 (Test): 0.7521258686276469
--------------------------------------------------------------

The tuned neural network model performs a bit better than the one with the
default values.
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7.7 Model Evaluation
Let’s summarize the results of our models
models = {

"Linear Regression" : reg_lin,
"LASSO Regression" : reg_lasso_cv,
"Decision Tree" : reg_tree_cv,
"Random Forest" : reg_rf_cv,
"XGBoost" : reg_xgb_cv,
"Neural Network" : reg_nn_cv

}

results = pd.DataFrame(columns=['Model', 'RMSE Train', 'RMSE
Test', 'MAE Train', 'MAE Test', 'R2 Train', 'R2 Test'])↪

for modelName in models:

# Evaluate the current model
rmse_train, rmse_test, mae_train, mae_test, r2_train, r2_test
= evaluate_model(models[modelName], X_train, y_train, X_test,
y_test, print_results=False)

↪

↪

# Store the results
res = {

'Model': modelName,
'RMSE Train': rmse_train,
'RMSE Test': rmse_test,
'MAE Train': mae_train,
'MAE Test': mae_test,
'R2 Train': r2_train,
'R2 Test': r2_test

}

df_tmp = pd.DataFrame(res, index=[0])

results = pd.concat([results, df_tmp], axis=0,
ignore_index=True)↪

# Sort the results by the RMSE of the test set
results = results.sort_values(by='RMSE

Test').reset_index(drop=True)↪

results
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Model RMSE Train RMSE Test MAE Train MAE Test R2 Train R2 Test
0 Neural Network 155891.592686 192879.831445 108538.194213 122558.799646 0.814404 0.752126
1 XGBoost 134323.318890 201839.376290 99419.234939 123656.215797 0.862207 0.728563
2 Random Forest 72654.489660 206073.357227 49716.929169 120254.776469 0.959687 0.717055
3 Linear Regression 203680.132714 215930.286432 133387.291151 137547.231274 0.683174 0.689340
4 LASSO Regression 204360.763893 217146.281610 134141.737315 138085.310926 0.681053 0.685832
5 Decision Tree 165756.350136 233527.646129 111454.509334 137387.480294 0.790171 0.636642

7.8 Conclusion
In this application, we have seen how to implement machine learning models for
regression problems. We have used a dataset of house prices in King County,
USA, to predict the price of a house based on a set of features. We have
trained several models, including linear regression, LASSO regression, decision
trees, random forests, XGBoost, and neural networks. We have used grid search
with cross-validation to find the best hyperparameters for the models. We have
evaluated the models based on the root mean squared error, mean absolute error,
and R-squared. With a bit more careful hyperparameter tuning, we could likely
improve the performance of the models even further and the ranking of the
models might change.
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