References
Alonso Robisco, Andrés, and José Manuel Carbó Martínez. 2022.
“Measuring the model risk-adjusted
performance of machine learning algorithms in credit default
prediction.” Financial Innovation 8 (1). https://doi.org/10.1186/s40854-022-00366-1.
Aruoba, S. Boragan, and Thomas Drechsel. 2022. “Identifying
Monetary Policy Shocks: A Natural Language Approach.” CEPR
Discussion Paper DP17133. CEPR.
Bank for International Settlements. 2021. “Machine learning applications in central
banking.” IFC Bulletin 57. https://www.bis.org/ifc/publ/ifcb57.pdf.
Bishop, Christopher M. 2006. Pattern
Recognition and Machine Learning. Edited by Michael Jordan,
Jon Kleinberg, and Bernhard Schölkopf. Information Science and
Statistics. Springer Science+Business Media, LLC. https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf.
Fernández-Villaverde, Jesús, Samuel Hurtado, and Galo Nuño. 2023.
“Financial Frictions and the Wealth
Distribution.” Econometrica 91 (3): 869–901. https://doi.org/10.3982/ecta18180.
Fernández-Villaverde, Jesús, Joël Marbet, Galo Nuño, and Omar Rachedi.
2024. “Inequality and the Zero Lower
Bound.” Working Paper 2407. Banco de España.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016.
Deep Learning. MIT Press. http://www.deeplearningbook.org.
Gorodnichenko, Yuriy, Tho Pham, and Oleksandr Talavera. 2023.
“The Voice of Monetary Policy.”
American Economic Review 113 (2): 548–84. https://doi.org/10.1257/aer.20220129.
Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning - Data Mining,
Inference, and Prediction. Second Edition. Springer.
Kaji, Tetsuya, Elena Manresa, and Guillaume Pouliot. 2023. “An Adversarial Approach to Structural
Estimation.” Econometrica 91 (6): 2041–63. https://doi.org/10.3982/ecta18707.
Kase, Hanno, Leonardo Melosi, and Matthias Rottner. 2022. “Estimating Nonlinear Heterogeneous Agents Models with
Neural Networks.” Federal Reserve Bank of Chicago. https://doi.org/10.21033/wp-2022-26.
Maliar, Lilia, Serguei Maliar, and Pablo Winant. 2021. “Deep learning for solving dynamic economic
models.” Journal of Monetary Economics 122
(September): 76–101. https://doi.org/10.1016/j.jmoneco.2021.07.004.
McCulloch, Warren S., and Walter Pitts. 1943. “A logical calculus of the ideas immanent in nervous
activity.” The Bulletin of Mathematical
Biophysics 5 (4): 115–33. https://doi.org/10.1007/bf02478259.
McKinney, Wes. 2022. Python for Data Analysis:
Data Wrangling with pandas, NumPy, and Jupyter. Third
Edition. O’Reilly Media. https://wesmckinney.com/book/.
Microsoft. 2024. “Deep learning vs. machine
learning in Azure Machine Learning.” Website. https://learn.microsoft.com/en-us/azure/machine-learning/concept-deep-learning-vs-machine-learning?view=azureml-api-2.
Mitchell, Tom. 1997. Machine Learning. McGraw
Hill. https://www.cs.cmu.edu/~tom/mlbook.html.
Murphy, Kevin P. 2012. Machine Learning: A Probabilistic
Perspective. Cambridge: MIT Press. https://probml.github.io/pml-book/book0.html.
———. 2022. Probabilistic Machine Learning: An
Introduction. MIT Press. https://probml.github.io/pml-book/book1.html.
———. 2023. Probabilistic Machine Learning: Advanced
Topics. MIT Press. https://probml.github.io/pml-book/book2.html.
Nielsen, Michael. 2019. Neural Networks and
Deep Learning. http://neuralnetworksanddeeplearning.com.
Rosenblatt, F. 1958. “The perceptron: A
probabilistic model for information storage and organization in the
brain.” Psychological Review 65 (6): 386–408. https://doi.org/10.1037/h0042519.
Sutton, Richard S., and Andrew G. Barto. 2018. Reinforcement
Learning: An Introduction. Second Edition. MIT Press. http://incompleteideas.net/book/the-book-2nd.html.
Varian, Hal R. 2014. “Big Data: New Tricks
for Econometrics.” Journal of Economic
Perspectives 28 (2): 3–28. https://doi.org/10.1257/jep.28.2.3.